• Title/Summary/Keyword: nlrp3

Search Result 83, Processing Time 0.029 seconds

Type I Interferon Increases Inflammasomes Associated Pyroptosis in the Salivary Glands of Patients with Primary Sjögren's Syndrome

  • Seung-Min Hong;Jaeseon Lee;Se Gwang Jang;Jennifer Lee;Mi-La Cho;Seung-Ki Kwok;Sung-Hwan Park
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.39.1-39.13
    • /
    • 2020
  • Sjögren's syndrome (SS) is a chronic and systemic autoimmune disease characterized by lymphocytic infiltration in the exocrine glands. In SS, type I IFN has a pathogenic role, and recently, inflammasome activation has been observed in both immune and non-immune cells. However, the relationship between type I IFN and inflammasome-associated pyroptosis in SS has not been studied. We measured IL-18, caspase-1, and IFN-stimulated gene 15 (ISG15) in saliva and serum, and compared whether the expression levels of inflammasome and pyroptosis components, including absent in melanoma 2 (AIM2), NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, gasdermin D (GSDMD), and gasdermin E (GSDME), in minor salivary gland (MSG) are related to the expression levels of type I IFN signature genes. Expression of type I IFN signature genes was correlated with mRNA levels of caspase-1 and GSDMD in MSG. In confocal analysis, the expression of caspase-1 and GSDMD was higher in salivary gland epithelial cells (SGECs) from SS patients. In the type I IFN-treated human salivary gland epithelial cell line, the expression of caspase-1 and GSDMD was increased, and pyroptosis was accelerated in a caspase-dependent manner upon inflammasome activation. In conclusion, we demonstrate that type I IFN may contribute to inflammasome-associated pyroptosis of the SGECs of SS patients, suggesting another pathogenic role of type I IFN in SS in terms of target tissue -SGECs destruction.

Anti-tumor and Anti-inflammatory Effects of Ecklonia cava in CT26 Tumor-bearing BALB/cKorl Syngeneic Mice (CT26 고형암을 내포하는 BALB/cKorl Syngeneic 마우스에서 Ecklonia cava의 항암효과 및 항염증효과)

  • Yu Jeong Roh;Ji Eun Kim;You Jeong Jin;Ayun Seol;Hee Jin Song;Tae Ryeol Kim;Kyeong Seon Min;Eun Seo Park;Ki Ho Park;Dae Youn Hwang
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.887-896
    • /
    • 2023
  • The inflammatory response have been considered as one of important targets for cancer treatment because they play a key role during all steps of tumor development including initiation, promotion, malignant conversion and progression. To investigate the anti-inflammatory response during anti-tumor activity of an aqueous extracts of Ecklonia cava (AEC), alterations on the distribution of mast cells and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nuclear factor (NF)-κB, inflammasome compositional protein and inflammatory cytokines were examined in CT26 colon tumor-bearing BALB/cKorl syngeneic mice after administrating AEC for five weeks. After treatment of AEC, total weight of tumor and necrotic region of tumor section were significantly decreased compared to vehicle treated group. The number of infiltered mast cells was higher in AEC treated group than vehicle treated group, while the expression levels of COX-2 and iNOS were decreased in AEC treated group. Also, similar decrease pattern were detected in the expression levels of NF-κB, NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1 (Cas-1) after AEC treatment although the decrease rate was varied. Furthermore, the mRNA expressions of three inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α) and interleukin-6 (IL-6) were remarkably decreased in AEC treated group compared to vehicle treated group. These results suggest that inhibition of inflammatory response may be tightly associated with anti-tumor activity of AEC in CT26 colon tumor-bearing BALB/cKorl syngeneic mice.

Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages

  • Kim, Seung-Jae;Cha, Ji-Young;Kang, Hye Suk;Lee, Jae-Ho;Lee, Ji Yoon;Park, Jae-Hyung;Bae, Jae-Hoon;Song, Dae-Kyu;Im, Seung-Soon
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.276-281
    • /
    • 2016
  • Corosolic acid (CA), a triterpenoid compound isolated from Lagerstroemia speciosa L. (Banaba) leaves, exerts anti-inflammatory effects by regulating phosphorylation of interleukin receptor- associated kinase (IRAK)-2 via the NF-κB cascade. However, the protective effect of CA against endotoxic shock has not been reported. LPS (200 ng/mL, 30 min) induced phosphorylation of IRAK-1 and treatment with CA (10 μM) significantly attenuated this effect. In addition, CA also reduced protein levels of NLRP3 and ASC which are the main components of the inflammasome in BMDMs. LPS-induced inflammasome assembly through activation of IRAK-1 was down-regulated by CA challenge. Treatment with Bay11-7082, an inhibitor of IκB-α, had no effect on CA-mediated inhibition of IRAK-1 activation, indicating that CA-mediated attenuation of IRAK-1 phosphorylation was independent of NF-κB signaling. These results demonstrate that CA ameliorates acute inflammation in mouse BMDMs and CA may be useful as a pharmacological agent to prevent acute inflammation.

Korean Red Ginseng and Korean black ginseng extracts, JP5 and BG1, prevent hepatic oxidative stress and inflammation induced by environmental heat stress

  • Song, Ji-Hyeon;Kim, Kui-Jin;Chei, Sungwoo;Seo, Young-Jin;Lee, Kippeum;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.267-273
    • /
    • 2020
  • Background: Continuous exposure to high temperatures can lead to heat stress. This stress response alters the expression of multiple genes and can contribute to the onset of various diseases. In particular, heat stress induces oxidative stress by increasing the production of reactive oxygen species. The liver is an essential organ that plays a variety of roles, such as detoxification and protein synthesis. Therefore, it is important to protect the liver from oxidative stress caused by heat stress. Korean ginseng has a variety of beneficial biological properties, and our previous studies showed that it provides an effective defense against heat stress. Methods: We investigated the ability of Korean Red Ginseng and Korean black ginseng extracts (JP5 and BG1) to protect against heat stress using a rat model. We then confirmed the active ingredients and mechanism of action using a cell-based model. Results: Heat stress significantly increased gene and protein expression of oxidative stress-related factors such as catalase and SOD2, but treatment with JP5 (Korean Red Ginseng extract) and BG1 (Korean black ginseng extract) abolished this response in both liver tissue and HepG2 cells. In addition, JP5 and BG1 inhibited the expression of inflammatory proteins such as p-NF-κB and tumor necrosis factor alpha-α. In particular, JP5 and BG1 decreased the expression of components of the NLRP3 inflammasome, a key inflammatory signaling factor. Thus, JP5 and BG1 inhibited both oxidative stress and inflammation. Conclusions: JP5 and BG1 protect against oxidative stress and inflammation induced by heat stress and help maintain liver function by preventing liver damage.

Apoptosis-associated speck-like protein containing a CARD is not essential for lipopolysaccharide-induced miscarriage in a mouse model

  • Eun Young Oh;Malavige Romesha Chandanee;Young-Joo Yi;Sang-Myeong Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • A disrupted immune system during pregnancy is involved in pregnancy complications, such as spontaneous abortion, preeclampsia, and recurrent pregnancy loss. This study examined the role of toll-like receptor (TLR) 4 and ASC (apoptosis-associated speck-like protein containing a CARD [c-terminal caspase recruitment domain]) in pregnancy complications using a lipopolysaccharide (LPS)-induced miscarriage mice model. Incidences of miscarriage and embryonic resorption were examined at 9.5 days of pregnancy in wild-type (WT), ASC knockout (KO), and TLR4 KO mice after injecting them with LPS. The fetuses and placenta were obtained after sacrifice at 15.5 days of pregnancy. A significantly lower frequency of fetus absorption was found in TLR4 KO mice, whereas corresponding absorption outcomes were strongly induced in the WT and ASC KO mice upon an LPS injection. As expected, TLR4 KO mice were resistant to LPS-induced abortion. A histological analysis of the miscarried placenta showed increasing levels of the eosin staining of spongiotrophoblast cells without any obvious difference between WT and ASC KO mice. These results suggest that TLR4 KO mice are resistant to LPS, which affects pregnancy persistence, whereas WT and ASC KO mice show high miscarriage rates due to LPS. Moreover, the ASC adaptor is not directly involved in LPS-induced miscarriages, and the NLRP3 inflammasome can be activated by other proteins in the absence of ASC.

Integrative applications of network pharmacology and molecular docking: An herbal formula ameliorates H9c2 cells injury through pyroptosis

  • Zhongwen Qi;Zhipeng Yan;Yueyao Wang;Nan Ji;Xiaoya Yang;Ao Zhang;Meng Li;Fengqin Xu;Junping Zhang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.228-236
    • /
    • 2023
  • Background: QiShen YiQi pills (QSYQ) is a Traditional Chinese Medicine (TCM) formula, which has a significant effect on the treatment of patients with myocardial infarction (MI) in clinical practice. However, the molecular mechanism of QSYQ regulation pyroptosis after MI is still not fully known. Hence, this study was designed to reveal the mechanism of the active ingredient in QSYQ. Methods: Integrated approach of network pharmacology and molecular docking, were conducted to screen active components and corresponding common target genes of QSYQ in intervening pyroptosis after MI. Subsequently, STRING and Cytoscape were applied to construct a PPI network, and obtain candidate active compounds. Molecular docking was performed to verify the binding ability of candidate components to pyroptosis proteins and oxygen-glucose deprivation (OGD) induced cardiomyocytes injuries were applied to explore the protective effect and mechanism of the candidate drug. Results: Two drug-likeness compounds were preliminarily selected, and the binding capacity between Ginsenoside Rh2 (Rh2) and key target High Mobility Group Box 1 (HMGB1)was validated in the form of hydrogen bonding. 2 μM Rh2 prevented OGD-induced H9c2 death and reduced IL-18 and IL-1β levels, possibly by decreasing the activation of the NLRP3 inflammasome, inhibiting the expression of p12-caspase1, and attenuating the level of pyroptosis executive protein GSDMD-N. Conclusions: We propose that Rh2 of QSYQ can protect myocardial cells partially by ameliorating pyroptosis, which seems to have a new insight regarding the therapeutic potential for MI.

Anti-inflammation and Anti-inflammasome Effects of Bambusae Caulis in Liquamen mediated by Nrf2 Activation in Kupffer cells (쿠퍼 세포에서 Nrf2 활성화 매개 죽력의 염증 및 인플라마좀 억제 효능)

  • Ji Hye Yang
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.253-264
    • /
    • 2023
  • Objectives : Bambusae Caulis in Liquamen (BCL), a traditional herbal medicine, is a distilled product of condensation from the burning of fresh bamboo stems. We previously identified the anti-oxidant capacity of BCL in hepatocytes and suggested that BCL is a promising therapeutic candidate for treating oxidative stress-induced hepatocellular damage. Despite the importance of the role played by Kupffer cells in liver disease, the efficacy of BCL on Kupffer cells is unclear. Therefore, this study aimed to determine whether BCL could suppress LPS-induced inflammation and LPS+ATP-induced inflammasomes in Kupffer cells. Methods : We used ImKCs, a murine immortalized Kupffer cell line to examined whether BCL inhibited LPS-induced inflammation response and oxidave stress. And, we prepared a total of 18 L of BCL, purchased from Bamboo Forest Foods Co., Ltd. (648 Samdari, Damyang-eup, Damyang-gun, Jeollanam-do, Republic of Korea), was concentrated using a decompression concentrator. Result : The LPS-induced release of inflammatory cytokines was abolished by BCL treatment. Also, BCL treatment suppressed the LPS+ATP-induced expression of inflammasome proteins (NLRP3, IL-1, and IL-18), and inhib β ited the release of IL-1 . BCL decreased LPS-or LPS+ATP-induc β ed reactive oxygen species production. In addition, BCL increased nuclear translocation of Nrf2 and the expression of HO-1 in a time-dependent manner. Conclusion : These results suggest the efficacy of BCL with respect to its anti-inflammatory and anti-inflammasome effects mediated by Nrf2 in Kupffer cells.

Restorative effects of Rg3-enriched Korean Red Ginseng and Persicaria tinctoria extract on oxazolone-induced ulcerative colitis in mice

  • Ullah, H.M. Arif;Saba, Evelyn;Lee, Yuan Yee;Hong, Seung-Bok;Hyun, Sun-Hee;Kwak, Yi-Seong;Park, Chae-Kyu;Kim, Sung Dae;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.628-635
    • /
    • 2022
  • Background: Ulcerative colitis (UC) is the large intestine disease that results in chronic inflammation and ulcers in the colon. Rg3-enriched Korean Red Ginseng extract (Rg3-RGE) is known for its pharmacological activities. Persicaria tinctoria (PT) is also used in the treatment of various inflammatory diseases. The aim of this study is to investigate the attenuating effects of Rg3-RGE with PT on oxazolone (OXA)-induced UC in mice. Methods: A total of six groups of mice including control group, OXA (as model group, 1.5%) group, sulfasalazine (75 mg/kg) group, Rg3-RGE (20 mg/kg) group, PT (300 mg/kg) group, and Rg3-RGE (10 mg/kg) with PT (150 mg/kg) group. Data on the colon length, body weight, disease activity index (DAI), histological changes, nitric oxide (NO) assay, Real-time PCR of inflammatory factors, ELISA of inflammatory factors, Western blot, and flow cytometry analysis were obtained. Results: Overall, the combination treatment of Rg3-RGE and PT significantly improved the colon length and body weight and decreased the DAI in mice compared with the treatment with OXA. Additionally, the histological injury was also reduced by the combination treatment. Moreover, the NO production level and inflammatory mediators and cytokines were significantly downregulated in the Rg3-RGE with the PT group compared with the model group. Also, NLR family pyrin domain containing 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-𝛋B) were suppressed in the combination treatment group compared with the OXA group. Furthermore, the number of immune cell subtypes of CD4+ T-helper cells, CD19+ B-cells, and CD4+ and CD25+ regulatory T-cells (Tregs) was improved in the Rg3-RGE with the PT group compared with the OXA group. Conclusion: Overall, the mixture of Rg3-RGE and PT is an effective therapeutic treatment for UC.

Indigo Naturalis in Inflammatory Bowel Disease: mechanisms of action and insights from clinical trials

  • Hyeonjin Kim;Soohyun Jeong;Sung Wook Kim;Hyung-Jin Kim;Dae Yong Kim;Tae Han Yook;Gabsik Yang
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.59-69
    • /
    • 2024
  • This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1β) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-β) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.

A novel herbal formulation consisting of red ginseng extract and Epimedium koreanum Nakai-attenuated dextran sulfate sodium-induced colitis in mice

  • Saba, Evelyn;Lee, Yuan Yee;Kim, Minki;Hyun, Sun-Hee;Park, Chae-Kyu;Son, Eunjung;Kim, Dong-Seon;Kim, Sung-Dae;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.833-842
    • /
    • 2020
  • Background: Ulcerative colitis (UC) is a commonly encountered large intestine disease in the contemporary world that terminates into colorectal cancer; therefore, the timely treatment of UC is of major concern. Panax ginseng Meyer is an extensively consumed herbal commodity in South East Asian countries, especially Korea. It exhibits a wide range of biologically beneficial qualities for almost head-to-toe ailments in the body. Epimedium koreanum Nakai (EKN) is also a widely used traditional Korean herbal medicine used for treating infertility, rheumatism, and cardiovascular diseases. Materials and methods: Separately the anti-inflammatory activities of both red ginseng extracts (RGEs) and EKNs had been demonstrated in the past in various inflammatory models; however, we sought to unravel the anti-inflammatory activities of the combination of these two extracts in dextran sulfate sodium (DSS)-induced ulcerative colitis in mice model because the allopathic remedies for UC involve more side effects than benefits. Results: Our results have shown that the combination of RGE + EKN synergistically alleviated the macroscopic lesions in DSS-induced colitic mice such as colon shortening, hematochezia, and weight loss. Moreover, it restored the histopathological lesions in mice and decreased the levels of proinflammatory mediators and cytokines through the repression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP-3) expression. In vitro, this combination also reduced the magnitude of nitric acid (NO), proinflammatory mediators and cytokine through NF-κB and mitogen-activated protein kinase (MAPK) pathways in RAW 264.7 mouse macrophage cells. Conclusion: In the light of these findings, we can endorse this combination extract as a functional food for the prophylactic as well as therapeutic treatment of UC in humans together with allopathic remedies.