• Title/Summary/Keyword: nitrosyl hemochrome

Search Result 13, Processing Time 0.023 seconds

Colorimetric Values of Various Myoglobin Derivatives in Pork and Beef Ribeye

  • Whang, Key;Lee, Sam-Pin;Kim, Hyuk-Il
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.2
    • /
    • pp.183-186
    • /
    • 2004
  • Various myoglobin derivatives were manufactured in pork and beef ribeye in the laboratory and their colorimetric values were measured with a chromameter. The average values of L* and a* of pork pigments were higher and b* values were lower than those of beef pigments. Oxymyoglobin (bright red) is considered to be a desirable fresh red meat pigment for consumer acceptance. The means of L*, a* and b* values of oxymyoglobin were 36.41, 27.32 and 4.71 for pork and 30.54, 25.58 and 9.81 for beef, respectively. Nitrosyl hemochrome, the pigment of processed meat products like sausages and hams had L*, a* and b* values of 47.93, 26.85 and 6.63 for pork and 41.82, 23.19 and 11.82 for beef. It was found that as a discoloration developed in meat and the meat color turned to brown, the L*, b* values increased and the a* value decreased.

Effect of NaCl Concentration and Cooking Temperature on the Color and Pigment Characteristics of Presalted Ground Chicken Breasts

  • Bae, Su Min;Cho, Min Guk;Hong, Gi Taek;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.417-430
    • /
    • 2018
  • This study was conducted to determine the effects of NaCl concentration and cooking temperature on the color and pigment characteristics of presalted ground chicken breasts. Four treatments with different salt concentrations (0%, 1%, 2%, and 3%) were prepared and stored for 7 d prior to cooking. Each sample was cooked to four endpoint temperatures ($70^{\circ}C$, $75^{\circ}C$, $80^{\circ}C$, and $85^{\circ}C$). The salt concentration affected the color and pigment properties of the cooked ground chicken breasts. As the salt concentration increased, the cooking yield and residual nitrite content also increased. However, the samples with 1%, 2%, and 3% NaCl showed similar nitrosyl hemochrome and total pigment contents. Among the products containing salt, the samples with 3% NaCl showed the lowest percentage myoglobin denaturation (PMD) and the lowest CIE $a^*$ values. The cooking temperature had limited effects on the pigment properties of cooked ground chicken breasts. The oxidation-reduction potential and residual nitrite contents increased with cooking temperature, while the PMD, nitrosyl hemochrome, total pigment contents and CIE $a^*$ values were similar in the samples cooked at different temperatures. These results indicated that the addition of up to 2% salt to ground chicken breasts and storage for 7 d could cause the pink color defect of cooked products. However, the addition of 3% NaCl could reduce the redness of the cooked products.

Effects of radish powder concentration and incubation time on the physicochemical characteristics of alternatively cured pork products

  • Bae, Su Min;Choi, Jae Hyeong;Jeong, Jong Youn
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.922-932
    • /
    • 2020
  • Previous research has indicated that radish powder could be a suitable replacement for chemical nitrite sources in alternatively cured meat products. However, the effects of radish powder level on the physicochemical properties of cured meat have not been systematically studied. In this study, we aimed to investigate the effects of varying concentrations of radish powder and incubation time on the physicochemical properties and cured meat pigments of alternatively cured meat products. We divided our experimental setup into seven groups with different radish powder concentrations and incubation times: control (0.01% sodium nitrite), treatment 1 (0.15% radish powder and 2 h incubation), treatment 2 (0.15% radish powder and 4 h incubation), treatment 3 (0.30% radish powder and 2 h incubation), treatment 4 (0.30% radish powder and 4 h incubation), treatment 5 (0.30% celery powder and 2 h incubation), and treatment 6 (0.30% celery powder and 4 h incubation). The cooking yield, CIE a* values (redness), and total pigment levels were not significantly different (p > 0.05) between any of the alternatively cured treatments and the control. However, when 0.30% radish powder or celery powder was added to the products, the CIE b* values increased significantly (p < 0.05) with incubation time. At the same vegetable concentration, the nitrite content, nitrosyl hemochrome, and curing efficiency also increased significantly (p < 0.05) as the incubation time increased from 2 to 4 h, regardless of the types of vegetable powder. Among the meat products cured with radish powder, treatment 4 showed the highest increase in residual nitrite content, nitrosyl hemochrome content, and curing efficiency, but showed decreased lipid oxidation. Our results suggest that increased concentrations of radish powder and longer incubation times would be more suitable for producing alternatively cured meat products comparable to traditionally cured products treated with synthetic nitrite.

The curing of meat batter by the plasma treated juice of red perilla

  • Lee, Juri;Jo, Kyung;Jung, Samooel
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.475-484
    • /
    • 2018
  • Nitrite is an essential additive for the manufacture of cured meat products. This study was conducted to investigate the curing effect of the plasma treated juice of red Perilla in meat batter. The nitrite content in the juice of red Perilla was increased by the indirect treatment of atmospheric pressure plasma, and the lyophilized powder of red Perilla juice contained 9,133 ppm of nitrite. A meat batter without a nitrite source was prepared as a negative control (NC), and the meat batters cured with sodium nitrite (PC), celery powder (CP), and the lyophilized powder of red Perilla juice treated with atmospheric pressure plasma (PTP) at 70 ppm level of nitrite were prepared. The PTP showed the highest pH and the lowest cooking loss among the treatments. There were no significant differences in the nitrosyl-hemochrome content in the cooked meat batters of the PC, CP and PTC. However, the PTP had a lower CIE $a^*$-value compared to the PC and CP. The malondialdehyde content in the cooked meat batters was significantly lower in the CP and PTP than in the NC while there was no significant difference between the NC and PC. Based on the results of this study, the plasma treated juice of red Perilla can be used as a new natural nitrite source for cured meat products.

Effects of Short-Term Presalting and Salt Level on the Development of Pink Color in Cooked Chicken Breasts

  • Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.98-104
    • /
    • 2017
  • The objective of this study was to determine the effects of short-term presalting on pink color and pigment characteristics in ground chicken breasts after cooking. Four salt levels (0%, 1%, 2%, and 3%) were presalted and stored for 0 and 3 d prior to cooking. Cooking yield was increased as salt level was increased. However, no significant differences in pH values or oxidation reduction potential (ORP) of cooked chicken breasts were observed. Cooked products with more than 2% of salt level had less redder (lower CIE $a^*$ value) on day 3 than on those on day 0. As salt level was increased to 2%, myoglobin was denatured greatly. Myoglobin denaturation was leveled off when samples had 3% of salt. With increasing salt levels, residual nitrite contents were increased while nitrosyl hemochrome contents were decreased. These results demonstrate that salt addition to a level of more than 2% to ground meat may reduce the redness of cooked products and that presalting storage longer than 3 d should be employed to develop a natural pink color of ground chicken products when less than 1% salt is added to ground chicken meat.

Effects of the Addition Levels of White Kimchi Powder and Acerola Juice Powder on the Qualities of Indirectly Cured Meat Products

  • Choi, Jae Hyeong;Bae, Su Min;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.636-648
    • /
    • 2020
  • This study investigated the effects of the addition levels of white kimchi powder and acerola juice powder, as natural sources of sodium nitrite and sodium ascorbate, on the quality of cooked ground pork products. Freeze-dried white kimchi powder was prepared and used after fermentation for 2 wk. Six treatments were included: control (100 ppm sodium nitrite and 500 ppm sodium ascorbate), treatment 1 (0.2% white kimchi powder, 0.02 % starter culture, and 0.1% acerola juice powder), treatment 2 (0.2% white kimchi powder, 0.02% starter culture, and 0.2% acerola juice powder), treatment 3 (0.4% white kimchi powder, 0.04% starter culture, and 0.1% acerola juice powder), treatment 4 (0.4% white kimchi powder, 0.04% starter culture, and 0.2% acerola juice powder), and treatment 5 (0.4% celery powder, 0.04% starter culture, and 0.2% acerola juice powder). The pH values were decreased (p<0.05) because of lower pH of acerola juice powder, resulting in lower cooking yields (p<0.05) in these treatments. CIE L* and CIE a* values of indirectly cured meat products were not different (p>0.05) from the sodium nitrite-added control. However, indirectly cured meat products showed lower (p<0.05) residual nitrite contents, but higher (p<0.05) nitrosyl hemochrome contents and cure efficiency than the control. Treatments 2 and 4 had higher (p<0.05) total pigment contents and lipid oxidation than the control. This study indicates that white kimchi powder coupled with acerola juice powder has substantial potential to substitute synthetic nitrite to naturally cured meat products, which could be favored by consumers seeking clean label products.

The Effects of Addition Timing of NaCl and Sodium Tripolyphosphate and Cooking Rate on Pink Color in Cooked Ground Chicken Breasts

  • Bae, Su Min;Cho, Min Guk;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.231-241
    • /
    • 2020
  • The current study investigated the effects of timing of NaCl (2%) and sodium tripolyphosphate (STPP, 0.5%) addition and cooking rates on color and pigment properties of ground chicken breasts. Four treatments were tested as follows: treatment 1, no NaCl and STPP added and stored for 7 d; treatment 2, NaCl+STPP added on 0 d and stored for 7 d; treatment 3, NaCl added on 0 d and STPP added on 7 d; and treatment 4, stored for 7 d and NaCl+STPP added. All samples were cooked at a fast (5.67℃/min) or slow cooking rate (2.16℃/min). Regardless of the timing of NaCl and STPP addition, reflectance ratios of nitrosyl hemochrome, cooking yield, pH values, oxidation-reduction potential, and percent myoglobin denaturation were similar (p>0.05) across treatments 2, 3, and 4. The highest CIE a values were observed in treatment 4 (p<0.05), while treatment 2 was effective in reducing the redness in cooked chicken products. The fast cooking rate resulted in lower CIE a values and higher CIE L values and cooking yield in cooked chicken breasts compared to the slow cooking rate. Our results indicate that adding NaCl and STPP to meat, followed by storing and cooking at a fast rate, may result in inhibiting the pink color defect sporadically occurred in cooked ground chicken breasts.

Investigating the Effects of Chinese Cabbage Powder as an Alternative Nitrate Source on Cured Color Development of Ground Pork Sausages

  • Jeong, Jong Youn;Bae, Su Min;Yoon, Jiye;Jeong, Da hun;Gwak, Seung Hwa
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.990-1000
    • /
    • 2020
  • This study investigated the effects of Chinese cabbage powder as a natural replacement for sodium nitrite on the qualities of alternatively cured pork products. Chinese cabbages grown in Korea were collected and used for preparing hot air dried powder. Different levels of Chinese cabbage powder were added to pork products and evaluated by comparing these products to those with sodium nitrite or a commercially available celery juice powder. The experimental groups included control (100 ppm sodium nitrite added), treatment 1 (0.15% Chinese cabbage powder added), treatment 2 (0.25% Chinese cabbage powder added), treatment 3 (0.35% Chinese cabbage powder added), and treatment 4 (0.4% celery juice powder added). The cooking yields and pH values of treatments 1 to 3 were significantly lower (p<0.05) than the control. However, all of the alternatively cured products were redder (higher CIE a* values; p<0.05) than the control and this result was supported from higher nitrosyl hemochrome, total pigment, and curing efficiency. Furthermore, the inclusion of vegetable powders to these products resulted in considerably less residual nitrite content. However, Chinese cabbage powder (0.25% and 0.35%) was effective in producing alternatively cured meat products with a higher curing efficiency comparable to those of the traditionally cured control or the products with celery juice powder. Therefore, Chinese cabbage powder exhibited the efficacy for use as a natural replacer for alternatively cured meat products.

Effect of Using Vegetable Powders as Nitrite/Nitrate Sources on the Physicochemical Characteristics of Cooked Pork Products

  • Jeong, Jong Youn;Bae, Su Min;Yoon, Jiye;Jeong, Da Hun;Gwak, Seung Hwa
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.831-843
    • /
    • 2020
  • This study investigated the potential for using vegetable powders as a natural replacement for sodium nitrite and their effects on the physicochemical characteristics of alternatively cured pork products. We analyzed pork products subjected to four treatments: control (0.015% sodium nitrite), Chinese cabbabe powder (CCP) treatment (0.4% Chinese cabbage powder), radish powder (RP) treatment (0.4% radish powder), and spinach powder (SP) treatment (0.4% spinach powder). Among the vegetable powders prepared in this study, SP had the highest (p<0.05) nitrate content, while CCP had the lowest (p<0.05). The cooking yields from these treatments were not significantly different from each other. However, the products with vegetable powders had higher (p<0.05) pH and thiobarbituric acid reactive substances values than the control. Pork products with vegetable powders also showed lower CIE L values and higher CIE b values than the nitrite-added control. RP treatment had similar (p>0.05) CIE a values to the control, while SP treatment had the lowest (p<0.05) CIE a values. The residual nitrite content was lower (p<0.05) in the vegetable powder added pork products than in the control, although nitrosyl hemochrome and total pigment contents in the CCP and RP treatments were similar (p>0.05) to those in the control. The control, CCP, and RP treatments showed curing efficiencies greater than 80%, indicating that CCP and RP would be promising potential replacements for sodium nitrite. The results of this study suggest that RP may be a suitable natural replacement for sodium nitrite to produce alternatively cured meat products, compared to other leafy vegetable powders.

Effects of Lemon Extract Powder and Vinegar Powder on the Quality Properties of Naturally Cured Sausages with White Kimchi Powder

  • Bae, Su Min;Gwak, Seung Hwa;Yoon, Jiye;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.950-966
    • /
    • 2021
  • This study investigated the effects of lemon extract powder and vinegar powder on the physicochemical and microbiological characteristics of pork sausages naturally cured using white kimchi powder during storage for 30 days. Six batches were included: control (0.01% sodium nitrite and 0.05% sodium ascorbate); treatment 1 (0.3% white kimchi powder and 0.5% lemon extract powder); treatment 2 (0.3% white kimchi powder and 1.0% lemon extract powder); treatment 3 (0.3% white kimchi powder and 0.5% vinegar powder); treatment 4 (0.3% white kimchi powder and 1.0% vinegar powder); and treatment 5 (0.3% white kimchi powder, 0.5% lemon extract powder, and 0.5% vinegar powder). Treatment 2 had significantly lower pH values and higher cooking loss than the other batches (p<0.05). Treatments 1, 2, and 5 had similar (p>0.05) CIE a* as the control, while treatments 3 and 4 showed significantly lower values (p<0.05). The residual nitrite content in naturally cured products was lower than the control (p<0.05), while treatments 1 and 2 showed significantly higher nitrosyl hemochrome content and curing efficiency (p<0.05). TBARS values were similar for all treatments and the control (p>0.05). Treatments 1 and 2 showed significantly reduced aerobic plate counts (APC; p<0.05) than the control and other treatments. However, across all batches, TBARS values and APC significantly increased during storage (p<0.05). Our results suggest that lemon extract powder, rather than vinegar powder, may offer a promising alternative for supplementing the functions of nitrite in naturally cured sausages.