• Title/Summary/Keyword: nitrogen recovery

Search Result 343, Processing Time 0.029 seconds

High-sensitivity Nitrogen Dioxide Gas Sensor Based on P3HT-doped Lead Sulfide Quantum Dots (P3HT가 도핑된 황화납 양자점 기반의 고감도 이산화질소 가스 센서)

  • JinBeom Kwon;YunTae Ha;SuJi Choe;Soobeen Baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.169-173
    • /
    • 2023
  • With the increasing concern of global warming caused by greenhouse gases owing to the recent industrial development, there is a growing need for advanced technology to control these emissions. Among the various greenhouse gases, nitrogen dioxide (NO2) is a major contributor to global warming and is mainly released from sources, such as automobile exhaust and factories. Although semiconductor-type NO2 gas sensors, such as SnO2, have been extensively studied, they often require high operating temperatures and complicated manufacturing processes, while lacking selectivity, resulting in inaccurate measurements of NO2 gas levels. To address these limitations, a novel sensor using PbS quantum dots (QDs) was developed, which operates at low temperatures and exhibits high selectivity toward NO2 gas owing to its strong oxidation reaction. Furthermore, the use of P3HT conductive polymer improved the thin film quality, reactivity, and reaction rate of the sensor. The sensor demonstrated the ability to accurately measure NO2 gas concentrations ranging from 500 to 100 ppm, with a 5.1 times higher sensitivity, 1.5 times higher response rate, and 1.15 times higher recovery rate compared with sensors without P3HT.

Physiological and Ecological Comparison of Rice Cultivars Grown in Low Fertilized Condition (질소시비량에 따른 벼 생리생태적 특성 연구)

  • Gu, H.M.;You, O.J.;Park, J.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.1
    • /
    • pp.175-185
    • /
    • 2018
  • This study was conducted to evaluate the physiological and ecological characters of rice cultivars suitable for low fertilized condition. 5 rice cultivars(Jinmibyeo, Sobibyeo, Hwayeongbyeo, Nagdongbyeo and Junambyeo) were cultivated for selection under 3 different nitrogen application levels, and 1 cultivars were selected. The results obtained are summarized as follows ; High yielded rice cultivars under low N application level were Junambyeo, Jinheng and Sobibyeo. Also these cultivars were yielded highly under conventional level(11kg/10a). Milled rice yield under conventional level(11kg/10a) was positively correlated with them under low N levels. Milled rice yield was most affected by no. of grain/m2. Rice cultivars that were high crop growth rate(CGR) before heading stage were Junambyeo, Sobibyeo and Nagdongbyeo. Grain filling rate was increased mostly until 20 days after heading, and decreased after this stage. Nitrogen use efficiency was higher under low N level(5.5kg/10a) than conventional level(11kg/10a). Especially, Junambyeo was most low in Apparent recovery of applied N(AR) under low N application level, but most high in Agronomic N use efficiency(ANUE). This characteristics of Junambyeo will to be useful for selection of variety suitable for growing under low fertilized condition.

Effects of Devarda's Alloy Addition on Determination of Total Nitrogen and Inorganic Nitrogen in Liquid Livestock Manure (Devarda's alloy 첨가가 축산분뇨 액비의 총 질소 및 무기태 질소 정량에 미치는 영향)

  • Lim, Tae-Jun;Kim, Ki-In;Park, Jin-Myeon;Lee, Seong-Eun;Noh, Jae-Seung;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.223-226
    • /
    • 2012
  • Liquid livestock manure (LLM) has been used as a nitrogen fertilizer source for horticulture plants. LLM contains organic nitrogen (N), ammonium, nitrate, and nitrite. The amount of nitrate and nitrite in LLM are usually small compared to the amount of ammonium in it and so they can be negligible if total nitrogen (N) concentration in LLM is higher than $1,000mg\;L^{-1}$. However, if total N concentration in LLM is less than $1,000mg\;L^{-1}$, the amount of nitrate and nitrite may affect total N concentration in LLM. Currently, Kjeldahl digestion method is mainly used for ammonium-N in LLM. Therefore, it is ineffective to analyze nitrate-N and nitrite-N. The objective of this study was to evaluate whether the total N concentrations are affected by the amount of nitrate-N and nitrite-N with diverse LLMs by Kjeldahl method (with and without Devarda's alloy after Conc. sulfuric acid digestion). Five liquid livestock manure samples were collected at swine farms in Ansung and Icheon. All LLM samples were stored at $25^{\circ}C$, subsampled at every $15^{th}$ day for 90 days, and analyzed for total N, ammonium-N, and nitrate-N. At the $90^{th}$ day, LLM samples were analyzed with and without Devarda's alloy after Conc. sulfuric acid digestion. Potassium nitrate, ammonium nitrate, and ammonium chloride were used to determine the N recovery percentages. Total N concentration ranged from 560 to $4,230mg\;L^{-1}$. Nitrate-Ns were found in all LLM samples, ranged from 21 to $164mg\;L^{-1}$. N recovery percentages with potassium nitrate were 0 % without Devarda's alloy and 100% with Devarda's alloy because adding Devarda's alloy facilitated nitrate-N into ammonium-N conversion. Total Ns were significantly different between two methods, with and without Devarda's alloy. Total N concentrations were $210mg\;L^{-1}$ at LLM 4 and $370mg\;L^{-1}$ at LLM 5 without Devarda's alloy and $290mg\;L^{-1}$ at LLM 4 and $490mg\;L^{-1}$ at LLM 5 with Devarda's alloy. These results suggest that if total N of LLM is less $1,000mg\;L^{-1}$, additional procedure such as adding Devarda's alloy can be used to estimate the total N and inorganic N better.

Effect of Reduced Nitrogen Fertigation Rates on Growth and Yield of Tomato (질소 관비량 절감이 토마토 생육 및 수량에 미치는 효과)

  • Lee, In-Bog;Lim, Jae-Hyun;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.306-312
    • /
    • 2007
  • To investigate the effect of N fertigation on the growth, yield, and water and nitrogen use efficiencies during tomato cultivation, seedlings were transplanted in a sandy loam soil under plastic film house condition. 0, 88, 132, 176, $220\;kg\;ha^{-1}$ N rates, which correspond to 0 (NF0), 40 (NF40), 60 (NF60), 80 (NF80), 100% (NF100) N level of soil test-based N fertilization, were injected weekly through drip irrigation system for 15 weeks in N fertigation system, and the control (conventional N treatment) was installed for comparison. Herein, nitrogen was applied by top-dressing with 60% as a basal and 40% as additional fertilizer. There was little different in stem diameter growth among N fertigation treatments, but plant height and dry matter increased with increasing N fertigation rates as well as in N conventional treatment. Tomato yield was increased with increasing the number of marketable fruits in N fertigation treatments, and the fruit yield was maximized in NF 80 treatment ($176\;kg\;ha^{-1}$ N supply or $96.6\;mg\;L^{-1}$ N injection). Dry matter productivity and nitrogen uptake amount were significantly increased with increasing N fertigation rates. The ratio of fruits to the dry weight of whole plant was decreased with increasing N fertigation rates, but this ratio was $2.6{\sim}5.3%$ higher in N fertigation treatments than in the control. In addition, the ratios of nitrogen distributed toward fruits in N fertigation treatments were $3.7{\sim}21.7%$ higher than that of control. The apparent N recovery percentages showed significantly higher values as $71.8{\sim}102.3%$ in N fertigation treatments, compared to 45% in N conventional treatment. Water use efficiency was significantly increased by fertigation system with the maximum $361\;kg/ha\;cm^{-1}$ in NF 80, which is comparable to $324\;kg/ha\;cm^{-1}$ of the conventional treatment. Conclusively, N fertigation system was effective on increasing tomato productivity and nutrient efficiency as well as 20% reduction of N fertilization level.

Characteristics of hypoxia-induced ANP Secretion in Perfused Beating Atria (허혈성 자극에 의한 심방이뇨 호르몬 분비 반응의 특성)

  • Kim, Kong-Soo;Kim, Min-Ho;Kim, Chang-Gon;Kim, Suk-Kee;Cho, Kyung-Woo;Cui, Xun
    • Journal of Chest Surgery
    • /
    • v.33 no.5
    • /
    • pp.398-406
    • /
    • 2000
  • Background: Cardiac atrium is an endocrine gland secreting a family of natriuretic peptides. The secretion of atrial natriuretic peptide(ANP) had been shown to be controlled by variable factors. The change in atrial dynamics have been considered as one of the most prominent stimuli for the stimulation of ANP secretion. Hypoxic stress has been shown to increase cardiac ANP secretion. However, the mechanism by which hypoxia increases ANP secretion cardiac ANP secretions. However, the mechanism by which hypoxia increases ANP secretion has not to be defined. Therefore, the purpose of the present study was tow-fold: to develop a protocol to defined the effect of hypoxia on ANP secretion in perfused beating rabbit atria and to clarify the mechanism responsible for the accentuation by hypoxia of ANP secretion. Material and Method: Experiments have been done in perfused beating rabbit atria. ANP was measured by radioimmunoassay. Result: Hypoxic stimulus with nitrogen decreased atrial stroke volume. The decrease in atrial stroke volume recovered basal level during the period of recovery with oxygen. ANP secretion and the concentration of perfusate ANP in terms of extracellular fluid(ECF) translocation which reflects the rate of myocytic release of ANP were increased by hypoxia and returned to basal levels during the recovery. Changes in ECF translocation paralleled by hypoxia and returned to basal levels during the recovery. Changes in ECF translocation paralleled to that of atrial stroke volume. At the start of recovery in atrial storke volume, ECF tranalocation incrased for several minutes. The above responses were stable and reproducible. Glibenclamide treatment prevented the recovery in atrial stroke volume. Increments by hypoxia of ANP secretion and ANP concentration were suppressed by glibenclamide. Conclusion: These results indicate that hypoxia incrased atrial myocytic ANP release and that the mechanism responsible for the accentuation is partially related to the change in K+ATP channel activity.

  • PDF

Coolant Leak Effect on Polymer Electrolyte Membrane Fuel Cell (고분자전해질연료전지의 냉각수 누설에 대한 연구)

  • Song, Hyun-Do;Kang, Jung-Tak;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.301-305
    • /
    • 2007
  • The performance of polymer electrolyte membrane fuel cell could be decreased due to coolant leaked from connection part. Micro pump was used to put small amount of coolant and investigate the effect on fuel cell. The stoichiometric ratio of hydrogen/air was 1.5/2.0, both side of gas was fully humidified, and current density of $400mA/cm^2$ was used as standard condition in this experiment. Constant current method was used to check performance recovery from coolant effect in 3 cell stack. The performance was recovered when coolant was injected in cathode side. On the other hand, the performance was not recovered when coolant was injected in anode side. Ethylene glycol could be converted to CO in oxidation process and cause poisoning effect on platinum catalyst or be adhered on GDL and cause gas diffusion block effect resulting performance decrease. Water with nitrogen gas was supplied in anode side to check performance recovery. Polarization curve, cyclic voltammetry, electrochemical impedance spectroscopy was used to check performance, and gas chromatography was used to check coolant concentration. Constant current method was not enough in full recovery of performance. However, water injection method was proved good method in full recovery of performance.

Determining Nitrogen Topdressing Rate at Panicle Initiation Stage of Rice based on Vegetation Index and SPAD Reading (유수분화기 식생지수와 SPAD값에 의한 벼 질소 수비 시용량 결정)

  • Kim Min-Ho;Fu Jin-Dong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.386-395
    • /
    • 2006
  • The core questions for determining nitrogen topdress rate (Npi) at panicle initiation stage (PIS) are 'how much nitrogen accumulation during the reproductive stage (PNup) is required for the target rice yield or protein content depending on the growth and nitrogen nutrition status at PIS?' and 'how can we diagnose the growth and nitrogen nutrition status easily at real time basis?'. To address these questions, two years experiments from 2001 to 2002 were done under various rates of basal, tillering, and panicle nitrogen fertilizer by employing a rice cultivar, Hwaseongbyeo. The response of grain yield and milled-rice protein content was quantified in relation to RVIgreen (green ratio vegetation index) and SPAD reading measured around PIS as indirect estimators for growth and nitrogen nutrition status, the regression models were formulated to predict PNup based on the growth and nitrogen nutrition status and Npi at PIS. Grain yield showed quadratic response to PNup, RVIgreen around PIS, and SPAD reading around PIS. The regression models to predict grain yield had a high determination coefficient of above 0.95. PNup for the maximum grain yield was estimated to be 9 to 13.5 kgN/10a within the range of RVIgreen around PIS of this experiment. decreasing with increasing RVIgreen and also to be 10 to 11 kgN/10a regardless of SPAD readings around PIS. At these PNup's the protein content of milled rice was estimated to rise above 9% that might degrade eating quality seriously Milled-rice protein content showed curve-linear increase with the increase of PNup, RVIgreen around PIS, and SPAD reading around PIS. The regression models to predict protein content had a high determination coefficient of above 0.91. PNup to control the milled-rice protein content below 7% was estimated as 6 to 8 kgN/10a within the range of RVIgreen and SPAD reading of this experiment, showing much lower values than those for the maximum grain yield. The recovery of the Npi applied at PIS ranged from 53 to 83%, increasing with the increased growth amount while decreasing with the increasing Npi. The natural nitrogen supply from PIS to harvest ranged from 2.5 to 4 kg/10a, showing quadratic relationship with the shoot dry weight or shoot nitrogen content at PIS. The regression models to estimate PNup was formulated using Npi and anyone of RVIgreen, shoot dry weight, and shoot nitrogen content at PIS as predictor variables. These models showed good fitness with determination coefficients of 0.86 to 0.95 The prescription method based on the above models predicting grain yield, protein content and PNup and its constraints were discussed.

Understanding to Enhance Efficiency of Nitrogen Uses in a Reclaimed Tidal Soil

  • Lee, Sang-Eun;Kim, Hye-Jin;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.955-960
    • /
    • 2012
  • In most agricultural soils, ammonium ($NH_4{^+}$) from fertilizer is quickly converted to nitrate ($NO_3{^-}$) by the process of nitrification which is crucial to the efficiency of N fertilizers and their impact on the environment. The salinity significantly affects efficiency of N fertilizer in reclaimed tidal soil, and the soil pH may influence the conversion rate of ammonium to nitrate and ultimately affect nitrogen losses from the soil profile. Several results suggest that pH has important effects on recovery of fall-applied N in the spring if field conditions are favorable for leaching and denitrification except that effects of soil pH are not serious under unfavorable conditions for N loss by these mechanisms. Soil pH, therefore, deserves attention as an important factor in the newly reclaimed tidal soils with applying N. However, fate of N studies in a newly reclaimed tidal soils have been rarely studied, especially under the conditions of saline-sodic and high pH. Therefore, understanding the fate of nitrogen species transformed from urea treated into the reclaimed tidal soil is important for nutrient management and environmental quality. In this article, we reviewed yields of rice and fate of nitrogen with respect to the properties of reclaimed tidal soils.

Effect of Sesbania Incorporation as Nitrogen Source on Growth and Yield of Whole Crop Barley and Reduction of N Fertilizer in Saemangeum Reclaimed Tidal Land

  • Lee, Su-Hwan;Bae, Hui-Su;Oh, Yang-Yeol;Lee, Sang-Hun;Kim, Yeong-Joo;Kim, Sun;Ryu, Jin-Hee;Jung, Kang-Ho;Lee, Choong-Geun;Kim, Jae-Hyeon;Kim, Yeong-Doo;Choi, Weon-Young;Cho, Jae-Yeong;Lee, Kyoung-Bo;Lee, Keon-Hui;Park, Ki-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.751-759
    • /
    • 2016
  • It is known that the poor soil fertility of newly reclaimed saline soils is due to the lack of organic matter and available mineral nutrients for crop production. The effect of green manuring with Sesbania aculeata in combination with five rates of urea-N treatments (N0. N25, N50, N75, N100) on the productivity of a subsequent whole-crop barley and the fertility of the reclaimed saline soil in Saemangeum was evaluated in the field during 2013-2014 growing season. Sesbania was grown during summer season (June to October). The amount of Sesbania incorporated was $16.2Mg\;ha^{-1}$. Sesbania contributed to $393kg\;N\;ha^{-1}$ to the soils when ploughed down and incorporated before whole-crop barley cultivated. The performances of whole-crop barley following sesbania incorporation were significantly affected by a combination of Sesbania manuring and different N rates. The N fertilizer equivalence without N fertilizer following Sesbania was 42.6% ($63.9kg\;N\;ha^{-1}$), compared with N100 ($150kg\;N\;ha^{-1}$) in fallow soils. The whole-crop barley yield responded to N fertilizer rates in both sesbania-amended and fallow soil. The yield response to nitrogen rates in fallow soil was linear (Y=0.0586X+3.3011, $R^2=0.9534$), whereas that in sesbania-amended soils was quadratic (Y= -0.001X2+0.1322X+5.7143, $R^2=0.9576$). The yield of whole-crop barley in sesbania-amended with increasing N rates was increased up to SN75 (115 kgN) $10.3Mg\;ha^{-1}$. Apparent N recovery (ANR) of whole-crop barely showed decreased with sesbania plus increasing rates of N fertilizer. Despite higher yield with sesbania manuring plus increasing N rates, the contributions of N from Sesbania with increasing N rates to whole-crop barley were decreased, whereas those from fertilizer increment due to excessively mineralized Nitrogen. Considering yield, ANR, N contribution from Sesbania and nitrogen fertilizer, the optimum N rate was N50 rate following sesbania incorporation.

Effects of Yeonlyeonggobon-dan on the Blood of Arsenic-poisoned Rats

  • Lim, Jong-Pil;Kang, In-Tag
    • Journal of Evidence-Based Herbal Medicine
    • /
    • v.2 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • Sodium arsenate and Yeonlyeonggobon-dan (nianlinggubendan) extract (YGD), a herbal restorative were treated p.o. 20 mg/kg and 500 mg/kg, respectively, and concurrently to rats, and examined the biochemical parameters in blood. The values of white blood cell (WBC), red blood cell (RBC), hemoglobin (Hgb) and hematocrit (Hct) in each group did not show significant variance. The value of aspartate aminotrasferase (AST) of arsenic-treated group was increased for 2 weeks significantly while that of the group of concurrent administration with YGD became low significantly compared with arsenic-treated group and the value of alkaline phosphatase (ALP) of arsenic-treated group was decreased while that of the group of concurrent administration with YGD was increased significantly compared with arsenic-treated group. In arsenic-treated groups, the value of glucose (Glu), and those of lactic dehydrogenase (LDH), blood urea nitrogen (BUN) and triglyceride (TG) were decreased at first but increased later while the groups of concurrent administration with YGD showed significant recovery from the toxicity of arsenic.

  • PDF