• 제목/요약/키워드: nitrogen rate

검색결과 3,123건 처리시간 0.028초

연변방전에 의한 유해물질의 분해제거 (Decomposition of Harmful Materials by SPCP Discharge)

  • 우인성;황명환
    • 한국전기전자재료학회논문지
    • /
    • 제11권11호
    • /
    • pp.1043-1048
    • /
    • 1998
  • The decomposition performance of the Surface induced Plasma Chemical Processing(SPCP) for benzene, toluene, xylene and $NO_2$ were experimentally examined. Discharge exciting frequency range was 5kHz and 10kHz, and low frequency discharge requires high voltage to inject high electric power in gas and to decompose contaminants. The decomposition rate of dioxide nitrogen for 5kHz power in gas and to decompose contaminants. The decomposition rate of dioxide nitrogen for 5kHz power supply is only 85%, but it’s rate for 10kHz power supply is very high, more than 96% when peak voltage is 12kv. Aromatic hydrocarbon vapor of up to 1000ppm is almost throughly decomposed at the flow rate of 1000$\ell$/min or lower rate under the discharge with electric power of several hundred watts. High decomposition rate is shown in every case, that is, for SPCP reactor is necessary to obtain the decomposition rate of more than 80~98%. The decomposition rate of benzene, toluene and xylene were 90~98% and dioxide nitrogen was 45~96%.

  • PDF

수도의 등숙기간 및 등숙속도 연구 I. 품종간 차이 및 질소의 영향 (Studies on the Duration and Rate of Grain Filling in Rice (Oryza sativa L.) I. Varietal Difference and Effects of Nitrogen)

  • 조동삼;정승근;박연규;손석용
    • 한국작물학회지
    • /
    • 제32권1호
    • /
    • pp.103-111
    • /
    • 1987
  • Understanding grain filling characteristics represented by grain filling duration and grain filling rate is import-ant in improving higher yielding varieties and developing better cultural methods of rice (Oryza sativa L.). Recently developed 6 Japonica and 6 Japonica/Indica varieties were grown under 3 nitrogen levels at Experimental Farm of Chungbuk National University in 1986. The range of grain filling duration of 12 varieties was 20.9-39.0 days, while grain filling rate ranged from 53.8 to 136.6 mg. panicle$^{-1}$. day$^{-1}$. Although the difference of the average grain filling duration between Japonica varieties and Japonica/Indica was less than 4 days, the average grain filling rate of Japonica/lndica varieties was greater than Japonica more than 30%. Samgangbyeo showed the shortest grain filling duration of 21.0-24.2 days and the greatest grain filling rate of 119.3-143.8 mgㆍpanicle$^{-1}$. day$^{-1}$ under 3 nitrogen levels, while Seomjinbyeo and Milyang 23 showed the quite opposite grain filling characteristics. Nitrogen levels did not show any significant effects on grain filling characteristics. Negative correlation was round between grain filling duration and grain filling rate, and significant positive correlations of grain filling rate with grains/panicle, grain weight and panicle weight indicated that grain filling rate is more important characteristics of grain filling. Pathway analysis revealed that contribution of grain filling rate to panicle weight is rather indirect through grain weight.

  • PDF

크리핑 벤트그라스 훼어웨이에서 관수회수.예지물과 질소시비수준이 엽조직 및 토양 질소함유량에 미치는 효과 (A Three-year Study on the Leaf and Soil Nitrogen Contents Influenced by Irrigation Frequency, Clipping Return or Removal and Nitrogen Rate in a Creeping Bentgrass Fairway)

  • 김경남;로버트쉬어만
    • 아시안잔디학회지
    • /
    • 제11권2호
    • /
    • pp.105-115
    • /
    • 1997
  • Responses of 'Penncross' creeping bentgrass turf to various fairway cultural practices are not well-established or supported by research results. This study was initiated to evaluate the effects of irrigation frequency, clipping return or removal, and nitrogen rate on leaf and soil nitrogen con-tent in the 'Penncross' creeping bentgrass (Agrostis palustris Huds.) turf. A 'Penncross' creeping bentgrass turf was established in 1988 on a Sharpsburg silty-clay loam (Typic Argiudoll). The experiment was conducted from 1989 to 1991 under nontraffic conditions. A split-split-plot experimental design was used. Daily or biweekly irrigation, clipping return or removal, and 5, 15, or 25 g N $m-^2$ $yr-^1$ were the main-, sub-, and sub-sub-plot treatments, respectively. Treatments were replicated 3 times in a randomized complete block design. The turf was mowed 4 times weekly at a l3 mm height of cut. Leaf tissue nitrogen content was analyzed twice in 1989 and three times in both 1990 and 1991. Leaf samples were collected from turfgrass plants in the treatment plots, dried immediately at 70˚C for 48 hours, and evaluated for total-N content, using the Kjeldahl method. Concurrently, six soil cores (18mm diam. by 200 mm depth) were collected, air dried, and analyzed for total-N content. Nitrogen analysis on the soil and leaf samples were made in the Soil and Plant Analyical Laboratory, at the University of Nebraska, Lincoln, USA. Data were analyzed as a split-split-plot with analysis of variance (ANOVA), using the General Linear Model procedures of the Statistical Analysis System. The nitrogen content of the leaf tissue is variable in creeping bentgrass fairway turf with clip-ping recycles, nitrogen application rate and time after establishment. Leaf tissue nitrogen content increased with clipping return and nitrogen rate. Plots treated with clipping return had 8% and 5% more nitrogen content in the leaf tissue in 1989 and 1990, respectively, as compared to plots treated with clipping removal. Plots applied with high-N level (25g N $m-^2$ $yr-^1$)had 10%, 17%, and 13% more nitrogen content in leaf tissue in 1989, 1990, and 1991, respectively, when compared with plots applied with low-N level (5g N $m-^2$ $yr-^1$). Overall observations during the study indicated that leaf tissue nitrogen content increased at any nitrogen rate with time after establishment. At the low-N level treatment (5g N $m-^2$ $yr-^1$ ), plots sampled in 1991 had 15% more leaf nitrogen content, as compared to plots sampled in 1989. Similar responses were also found from the high-N level treatment (25g N $m-^2$ $yr-^1$ ).Plots analyzed in 1991 were 18% higher than that of plots analyzed in 1989. No significant treatment effects were observed for soil nitrogen content over the first 3 years after establishment. Strategic management application is necessary for the golf course turf, depending on whether clippings return or not. Different approaches should be addressed to turf fertilization program from a standpoint of clipping recycles. It is recommended that regular analysis of the soil and leaf tissue of golf course turf must be made and fertilization program should be developed through the interpretation of its analytic data result. In golf courses where clippings are recycled, the fertilization program need to be adjusted, being 20% to 30% less nitrogen input over the clipping-removed areas. Key words: Agrostis palustris Huds., 'Penncross' creeping bentgrass fairway, Irrigation frequency, Clipping return, Nitrogen rate, Leaf nitrogen content, Soil nitrogen content.

  • PDF

Mixotrophic 미세조류를 이용한 유기물 및 영양염류 제거에 미치는 pH 및 폭기의 영향 (Effects of pH and aeration rates on removal of organic matter and nutrients using mixotrophic microalgae)

  • 김선진;이윤희;황선진
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.69-76
    • /
    • 2013
  • Specific growth rate and removal rate of nitrogen and phosphorus of Chlorella sorokiniana, Chlorella vulgaris, Senedesmus dimorphus those are able to metabolite mixotrophically and have high nitrogen and phosphorus removal capacity were examined. Based on the results, one microalgae was selected and conducted experiments to identify the operating factors such as pH and aeration rate. The specific growth rate and phosphorus removal rate of C. sorokiniana significantly presented as $0.29day^{-1}$ and 1.65 mg-P/L/day, while the nitrogen removal rate was high as 12.7 mg-N/L with C. vulgaris. C. sorokiniana was chosen for appropriate microalgae to applying for wastewater treatment system and was cultured in pH ranged 3 to 11. High specific growth rate and removal rate of nitrogen and phosphorus were shown at pH 7 as $0.71day^{-1}$, 7.61 mg-N/L/day, and 1.24 mg-P/L/day, respectively. The specific growth rate examined with aeration rate between 0 and 2 vvm (vol/vol-min) highly presented as $1.2day^{-1}$ with 1.5 ~ 2 vvm, while the nitrogen removal rate was elevated with 0.5 vvm as 9.43 mg-N/L/day.

인공습지의 형태에 따른 계절별 질소처리 특성 연구 (A Study on Seasonal Nitrogen Treatment Characteristics according to Design of Constructed Wetland)

  • 손영권;윤춘경;김준식;김형중
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.94-101
    • /
    • 2012
  • The performance data for eight years from a free-surface-flow constructed wetland system receiving agricultural tailwater were used to analyze denitrification rate and nitrogen treatment characteristics according to season and wetland design. Seasonal difference between growing season (March~November) and winter season (December~February) was shown in the concentration of all nitrogen species. Seasonal nitrogen treatment has similar trend with temperature and measured denitrification rate. The highest denitrification rate was measured in July, but treatment efficiency was most higher in May and June. Nitrogen absorption of vegetation could affect to these wetland performances, therefore dense population of wetland vegetation might be helpful. According to design of wetland, at least 25~50 m of wetland length was needed to decrease effluent T-N concentration to background concentration in growing season. In winter season, wetland needed much longer distance to reduce T-N concentration. Mass removal rate was continuously high through whole year because runoff coefficient was low in winter season. Applicability of constructed wetland was observed for the total maximum daily load that control T-N load.

준혐기-호기 생물막 공정을 이용한 돈사폐수 처리 (Treatment of Piggery Wastewater by Anoxic-Oxic Biofilm Process)

  • 임재명;한동준
    • 환경위생공학
    • /
    • 제12권2호
    • /
    • pp.1-12
    • /
    • 1997
  • This research aims to develop biofilm process for the nutrient removal of piggery wastewater. The developed process is the four stage anoxic-oxic biofilm process with recirculation of the final effluent. In summery, the results are as follows: 1. Nitrification in the piggery wastewater built up nitrite because of the high strength ammonia nitrogen. The nitrification of nitrobacter by free ammonia was inhibited in the total ammonia nitrogen loading rate with more than 0.2 kgNH$_{3}$-N/m$^{3}$·d. 2. The maximal total ammonia nitrogen removal rate was obtained at 22$\circ $C and without being affected by the loading rate. But total oxidized nitrogen production rate was largely affected by loading rate. 3. Autooxidation by the organic limit was a cause of the phosphorus release in the aerobic biofilm process. But the phosphorus removal rate was 90 percent less than the influent phosphorus volumetric loading rate of above 0.1 kgP/m$^{3}$·d. Therefore, the phosphorus removal necessarily accompanied the influent loading rate. 4. On the anoxic-oxic BF process, the total average COD mass balance was approximately 67.6 percent. Under this condition, the COD mass removal showed that the cell synthesis and metabolism in aerobic reactor was 42.8 percent and that the denitrification in anoxic reactor was 10.7 percent, respectively.

  • PDF

A Submerged Membrane Bioreactor with Anoxic-oxic Recycle for the Treatment of High-strength Nitrogen Wastewater

  • Shim, Jin-Kie;Yoo, Ik-Keun;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • 제3권1호
    • /
    • pp.32-38
    • /
    • 2001
  • Using the hollow fiber membrane module in a lab-scale membrane bioreactor, the anoxic- oxic (AO) process for nitrogen removal was operated for about one year. For the influent wastewater containing 1,200-1,400 mg $1^{-1}$ of CODcr and 200-310 mg $1^{-1}$ of nitrogen, this process achieved a high quality effluent of less than 30 mgCOD $liter^{-1}$ and 50 mgN $liter^{-1}$. The removal rate of organics was above 98% at a loading rate larger than 2.5 kgCOD $m^{-3}$$d^{-1}$. When the internal recycle from the oxic to the anoxic reactor changed room 2n to 600% rout the influent flow rate, the nitrogen removal rate increased from about 70 to 90% at a loading rate of 0.4 kgT-N m-s d-1. The initial increase of transmembrane pressure (TMP) was observed after a 4-month operation while maintaining the flux and MLSS concentration at 7-9 1 $m^2$ $h^{-1}$ and 6,000-14,000 mg $1^{-1}$, respectively. The TMP could be maintained below 15 cmHg for an 8-month operation. The chemical cleaning with an acid followed by an immersion in an alkali solution gave better cleaning result with the membrane operated for 10 month rather than that only by an alkali immersion.

  • PDF

순환여과시스템에서 오존을 이용한 암모니아성 질소의 탈질화 연구

  • 허목;임진숙;김부길
    • 한국환경과학회지
    • /
    • 제7권4호
    • /
    • pp.493-500
    • /
    • 1998
  • An experimental study was conducted to Indentify the dlrpct denitrification of ammonium nitrogen In culture water by ozone. During the experimnet period, pH was 7.8-8.8. pH was grdually lower after ammonium nitrogen was reacted with ozone under Br . In addition, it can be tmown that the culturing water was improved greatly form the inverstigation of T-N by biofilm and ozonation. As the results of a variation of recirculation rate, denitrification of ammonium nitrogen was in increased in proportion to the recirculation rate. But Nitrification of microorganism was opposite to the recirculation rate. With the increasing injected ozone in ozonation tank uner 21 clrculation/day(6.71 /min), dinitrification of ammonium nitrogen was Increased lineraly in propotion to the Increasing of injected ozone concentration.

  • PDF

Treatment Characteristics of Wastewater with Flow Rate Variation in Anaerobic-Aerobic Activated Sludge Process

  • Lee Min-Gyu;Suh Kuen-Hack;Hano Tadashi
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제1권1호
    • /
    • pp.11-17
    • /
    • 1997
  • The treatment performances of anaerobic-aerobic activated sludge process were investigated under various operation conditions. The treatment system proposed in this study gave a relatively stable performance against hourly change of the flow rate and showed a satisfactory removal efficiency of nitrogen and phosphorus compounds under experimental conditions. The average removal efficiency of total nitrogen gradually decreased as the influent total nitrogen concentration was increased. High C/N ratio of the wastewater was required for the complete removal of nitrogen. Glucose as a carbon source was more efficient than starch and the removal ability for all components become higher with the increase of the fraction of glucose.

  • PDF

Treatment Characteristics of Wastewater with Flow Rate Variation in Anaerobic-Aerobic Activated Sludge Process

  • Min-Gyu Lee;Kue
    • 한국환경과학회지
    • /
    • 제1권1호
    • /
    • pp.11-17
    • /
    • 1992
  • The treatment performances of anaerobic-aerobic activated sludge Process were investigated under various operation conditions. The treatment system proposed in this study gave a relatively stable performance against hourly change of the flow rate and showed a satisfactory removal efficiency of nitrogen and phosphorus compounds under experimental conditions. The average removal efficiency of total nitrogen gradually decreased as the influent total nitrogen concentration was increased. High C/N ratio of the wastewater was required for the complete removal of nitrogen. Glucose as a carbon source was more efficient than starch and the removal ability for all components become hither with the increase of the fraction of glucose.

  • PDF