• Title/Summary/Keyword: nitrogen metabolism

Search Result 414, Processing Time 0.028 seconds

The Effect of Vitamin $B_2$ Deficiency on Fuel Metabolism in Streptozotocin Induced Diabetic Rats (Vitamin $B_2$ 결핍이 Streptozotocin 유발 당뇨 흰쥐의 에너지대사에 미치는 영향)

  • 조윤옥;박경순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.4
    • /
    • pp.487-492
    • /
    • 1995
  • The purpose of this study was to investigate the effect of vitamin B2 deficiency on fuel metabolism in streptozotocin-induced diabetic rats. Thirty rats were fed a vitamin B2 deticient diet(-B2) or a control diet (+B2) for 2 weeks and then subdivided into 3 groups respectively : base group, one day diabetic group and three day diabetic group. Diabetes of the rats were induced by streptozotocin injection into the tail vein. Glucose, glycogen, protein, alanine, triglyceride and free fatty acid were compared in plasma, liver, skeletal muscle of rats. Also, the total urinary nitrogen and glucose excertion were compared. Compared with +B2 rats, the increase of plasm glucose in -B2 rats due to the diabetes tended to be smaller. After diabetes were induced, the levels of plasma protein and alanine was significantly decreased and the urinary nitrogen excretion was significantly increased in -B2 rats. The level of plasma free fatty acid was increased continuously in B2 rats while increased at the first day and decreased at the third day diabetes was induced in +B2 rats. These results suggest that vitamin B2 deficiency increase protein catabolism due to the decrease of fatty acid oxidation. Thus, vitamin B2 deficiency in diabetes impair the adaptation of animals to the fuel metabolism and aggravate the body protein wasting which is one of the chronic complications of diabetes.

  • PDF

Effect of Different Rumen-degradable Carbohydrates on Rumen Fermentation, Nitrogen Metabolism and Lactation Performance of Holstein Dairy Cows

  • Khezri, A.;Rezayazdi, K.;Mesgaran, M. Danesh;Moradi-Sharbabk, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.651-658
    • /
    • 2009
  • Four multiparous lactating Holstein cows fitted with rumen cannulae were fed diets varying in the amount and source of rumen-degradable carbohydrates (starch vs. sucrose) to examine their effects on rumen fermentation, nitrogen metabolism and lactation performance. A $4{\times}4$ Latin square with four diets and four periods of 28 days each was employed. Corn starch and sucrose were added to diets and corn starch was replaced with sucrose at 0 (0 S), 2.5 (2.5 S), 5.0 (5.0 S) 7.5% (7.5 S) of diet dry matter in a total mixed ration (TMR) containing 60% concentrate and 40% forage (DM basis). Replacing corn starch with sucrose did not affect (p>0.05) ruminal pH which averaged 6.41, but the ruminal pH for 7.5 S decreased more rapidly at 2 h after morning feeding compared with other treatments. Sucrose reduced ($p{\leq}0.05$) ruminal $NH_3-N$ concentration (13.90 vs. 17.09 mg/dl) but did not affect peptide-N concentration. There was no dietary effect on total volatile fatty acids (110.53 mmol/L) or the acetate to propionate ratio (2.72). No differences (p>0.05) in molar proportion of most of the individual VFA were found among diets, except for the molar proportion of butyrate that was increased ($p{\leq}0.05$) with the inclusion of sucrose. Total branched chain volatile fatty acids tended to increase ($p{\geq}0.051$) for the control treatment (0 S) compared with the 7.5 S treatment. Dry matter intake, body weight changes and digestibility of DM, OM, CP, NDF and ADF were not affected by treatments. Sucrose inclusion in the total mixed ration did not affect milk yield, but increased milk fat and total solid percentage ($p{\leq}0.05$). Sucrose tended ($p{\geq}0.063$) to increase milk protein percentage (3.28 vs. 3.05) and reduced ($p{\leq}0.05$) milk urea nitrogen concentration (12.75 vs. 15.48 mg/dl), suggesting a more efficient utilization of the rapidly available nitrogen components in the diet and hence improving nitrogen metabolism in the rumen.

Effects of Early Weaning and Protein Intake on Organ Growth, Metabolism and Physiological Functional in Rats (조기 이유와 단백질의 양적.질적 섭취가 흰쥐의 기관성장 , 질소대사 및 생리기능에 미치는 영향)

  • 이연숙
    • Journal of Nutrition and Health
    • /
    • v.31 no.3
    • /
    • pp.243-252
    • /
    • 1998
  • This study was conducted to investigated the short-term effects of early weaning and protein intake on organ and cell growth, nitrogen metabolism and physiological functions of rats. Five groups of early weaned rats separated from the dam on the 15th day postpartum were each given one five diets consisting of either one of the three levels of casein-low(8%), -normal (16%), and -high(32%), or a normal level (16%) of isolated soy protein(ISP) or egg yolk protein, for 7 days. The normal weaned rats were fed maternal breast milk for three weeks from birth. On the 22nd day postpartum , all the rats were sacrificed . The weight gain of the early weaned rats, especially the ones fed high protein, was observed to be significantly lower than that of the normal weaned rats. By the 15th day, of early weaning and especially in the ISP-fed rats, the total DNA contents of liver and kidney, which may be said to represent an index of cell numbers, significantly decreased, but their fresh and dry weight and protein/DNA ratio, allegedly representing an index of cell size, significantly increased , not affecting the cell number and cell size of brain. There were no differences in total serum protein and albumin concentrations between early and normal weaned rats. In the early weaned rats observed , the serum urea N and $\alpha$-amino N concentrations significantly increased in high protein-fed rats, and decreased in low protein-fed rats. Another observation was that no significant difference was noticed as regards to serum GOT activity, total bilirubin, uric acid, and creatinine concentration, which may represent indices of liver and kidney functions, among rat groups, GPT activity was an exception . These results suggest that premature weaning and the quality and quantity of dietary protein significantly affect organ and cell growth and nitrogen metabolism but does not seriously affect physiological functions in the neonatal development of rats.

  • PDF

Effects of Dietary Electrolyte Balance on Growth Performance, Nitrogen Metabolism and Some Blood Biochemical Parameters of Growing Rabbits

  • Li, J.W.;Wang, X.P.;Wang, C.Y.;Zhu, Y.L.;Li, F.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1726-1731
    • /
    • 2013
  • The effects of different dietary electrolyte balance (DEB) on growth performance, nitrogen (N) metabolism and some blood biochemical parameters were investigated in 2 to 3 months old growing rabbits. A total of 150 growing rabbits of 2 months age were randomly divided into five groups according to average body weight, with 30 rabbits in each group. The DEB levels of the five experimental diets were -154, -3.16, +201, +347, and +500 meq/kg of dry matter (DM), respectively. There was a 7-d adaptation period and a 23-d experimental period. The results showed that the DEB levels had a quadratic affect on the average daily feed intake (ADFI) (p<0.001). The greatest ADFI was achieved when the DEB level was +201 meq/kg DM. Fecal N (FN) content linearly decreased (0.047), while digestible N (DN), retained N (RN), efficiency of intake N converted into digestible N (DN/IN) and the efficiency of intake N converted into retained N (RN/IN) linearly increased with the DEB increase (0.020, 0.004, 0.021, and 0.049, respectively). Serum phosphorus (P) ion content linearly increased with the DEB increase (p = 0.036). The DEB had a quadratic relationship with serum anion gap (AG) (p = 0.002) and serum parathyroid hormone (PTH) content (p = 0.016). The DEB levels quadratically affected base excess (BE) in the plasma (p<0.001). In conclusion, the DEB unaffected growth performance but affected feed intake, N metabolism and some blood biochemical parameters of growing rabbits.

Impact of Ambient Temperature and Dietary Crude Protein in Wethers: Nitrogen Metabolism and Feed Efficiency

  • Sun, Sangsoo;Christopherson, Robert J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1221-1227
    • /
    • 2001
  • Young lambs (Suffolk wethers, n=18), which were 22 to 26 kg average BW, were chronically exposed to temperatures of +1 to +$4^{\circ}C$ (cold) or +21 to +$24^{\circ}C$ (warm) during 10 wk experimental periods. The sheep were closely shorn and were housed in individual metabolism crates in controlled environment rooms. Sheep consumed pelleted diets ad libitum, which consisted of mainly barley grain and brome grass, and contained 7, 11, or 14% CP. The experimental design consisted of a $2{\times}3$ factorial with a single crossover of environment treatment. Feed intake, BW, feces, and urine excretion were measured. Apparent digestibilities were not affected by diet CP concentration or temperature treatments; however, voluntary intake per kg BW was increased (p<0.05) by diet CP content in both environments. Growing lambs gained weight slightly faster in a cold environment when N intake was above 27 g/d. Nitrogen excretion and N balance were positively related (p<0.01) with diet CP content, and fecal N excretion was significantly increased (p<0.05) in the cold environment. Therefore, dietary CP content strongly influenced N metabolism; however, cold exposure did alter only fecal N excretion. The higher DM intake per kg BW at 11% CP diet in the cold environment permitted ADG comparable to 14% CP diet in the warm environment. The results of this study do support the hypothesis that lambs are better able to utilize a moderate reduction in the CP content of the diet in a cold environment.

Physiological Effects of GLT1 Modulation in Saccharomyces cerevisiae Strains Growing on Different Nitrogen Sources

  • Brambilla, Marco;Manuela Adamo, Giusy;Frascotti, Gianni;Porro, Danilo;Branduardi, Paola
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.326-336
    • /
    • 2016
  • Saccharomyces cerevisiae is one of the most employed cell factories for the production of bioproducts. Although monomeric hexose sugars constitute the preferential carbon source, this yeast can grow on a wide variety of nitrogen sources that are catabolized through central nitrogen metabolism (CNM). To evaluate the effects of internal perturbations on nitrogen utilization, we characterized strains deleted or overexpressed in GLT1, encoding for one of the key enzymes of the CNM node, the glutamate synthase. These strains, together with the parental strain as control, have been cultivated in minimal medium formulated with ammonium sulfate, glutamate, or glutamine as nitrogen source. Growth kinetics, together with the determination of protein content, viability, and reactive oxygen species (ROS) accumulation at the single cell level, revealed that GLT1 modulations do not significantly influence the cellular physiology, whereas the nitrogen source does. As important exceptions, GLT1 deletion negatively affected the scavenging activity of glutamate against ROS accumulation, when cells were treated with H2O2, whereas Glt1p overproduction led to lower viability in glutamine medium. Overall, this confirms the robustness of the CNM node against internal perturbations, but, at the same time, highlights its plasticity in respect to the environment. Considering that side-stream protein-rich waste materials are emerging as substrates to be used in an integrated biorefinery, these results underline the importance of preliminarily evaluating the best nitrogen source not only for media formulation, but also for the overall economics of the process.

Sodium Chloride and Nitrogen Metabolism of Korean Females (한국여자의 소금 및 질소대사에 관하여)

  • Kim, Yong-Keun;Yang, Il-Suk;Chung, Soon-Tong
    • The Korean Journal of Physiology
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 1975
  • In order to study the dally metabolism of sodium chloride and of nitrogen, 24-hour urine samples were collected from 1,593 normal Korean females whose ages varied from 2 to 80 years old. The volume, the concentration of chloride and the osmolality of the urine, add the total nitrogen were determined, along with the resting pulse rate and the blood pressure. The daily urine volume was maintained at $1,000{\sim}1,300\;ml/m^2/day$ in all age groups while the chloride concentration and osmolality of the urine samples were approximately 200 mEq/liter and 600 milliosmoles, respectively, in most of age groups. Hence the daily urinary output of sodium chloride was estimated to be approximately $15g/m^2$/day in adult groups. On the other hand, the daily excretion of total nitrogen amouted to approximately $5{\sim}6g/m^2/day$. These findings indicated that the average Korean females live on low-protein and high-salt diets throughout their life. Despite a known correlation between the incidence of hypertension and the high salt intake, none of the subjects employed in this work showed any sign of hypertension.

  • PDF

Energy Balance by Carbon and Nitrogen Balance Technique in White Leghorn and Rhode Island Red Hens Fed Maize- and Broken Rice-Based Diets

  • Jadhao, S.B.;Tiwari, C.M.;Chandramoni, Chandramoni;Khan, M.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1080-1084
    • /
    • 1999
  • Carbon (C) and nitrogen (N) balance technique was used to determine energy balance in Rhode Island Red (RIR) and White Leghorn (WL) laying hens fed maize-and broken rice (BR)- based diets. Carbon and nitrogen intake and outgo were determined for three days on ad libitum fed diets followed by 2/3 of ad libitum intake for next three days. Carbon analysis was done by using four 'U' tubes in which carbon dioxide released during bomb calorimetry was absorbed on drierite in tube 1 and 2 whereas tube 3 and 4 contained sodalime self indicating granule. Carbon in $CO_2$ was determined by an open circuit respiration system. Energy retention (E, kcal) was calculated as E = 12.386 C (g) - 4.631 N (g). By regressing metabolisable energy (ME) intake on energy balance, maintenance ME requirement of RIR was 128 whereas, that of WL hens was $144kcal/kg\;W^{0.75}/d$. Effciency of utilization of ME for maintenance from BR-based diet in RIR hens was equal but in WL hens it was 11% less than maize-based diet.

Studies on the Nutritional Physiology of Soybean 6. Variatio of Potassium at the Various Position of Leaf on the Main Stem (대두의 영양생리학적 연구 6. 엽위별 가리의 변이)

  • 이순희
    • Journal of Plant Biology
    • /
    • v.17 no.3
    • /
    • pp.127-136
    • /
    • 1974
  • The effect of potassium metabolism on the soybean leaves was studied with comparison of other elements during the successive growing period. The results were as follows; 1. The percentage of potassium content showed remarkable increase not only in the first compound leaf at a stage which was growing vigorously and producing new leaves, but also in the fifth compound leaf at a stage which was taking a active metabolism of nitrogen and carbohydrate but not producing new leaves. However, the percentage of potassium content was decreased in the second compound leaf than in the first one. Such a result could be regarded as a potassium removal from mature leaves into immature and flowing out from stoma through respiration. During the pod-development the percentage of potassium content in the soybean leaf was decreased. 2. If nitrogen, phosphorus and potassium were added excessively in the nutrient solution, the percentage of potassium content in the soybean leaf had increased. The effects of these elements showed a remakable increase in the excessive plot of nitrogen than in that of phosphorus. At early stage the redtarded effect of phosphorus on the growth of soybean could be covered by potassium, however, at late stage it could not. The growth of soybean plant was much more inhibited by potassium, compared with nitrogen and phosphorus. New leaves could not be produced in the potassium deficient soybean plant after the third compound leaf. The normal growth of soybean plant could not be observed if only one element was excessively added to the culture solution, compared with the deficiency of other two elements.

  • PDF