• Title/Summary/Keyword: nitrogen management

Search Result 933, Processing Time 0.025 seconds

Development of a Nitrogen Application System for Nitrogen Deficiency in Corn

  • Noh, Hyun Kwon
    • Journal of Biosystems Engineering
    • /
    • v.42 no.2
    • /
    • pp.98-103
    • /
    • 2017
  • Purpose: Precision agriculture includes determining the right amount of nitrogen for a specific location in the field. This work focused on developing and validating a model using variable rate nitrogen application based on the estimated SPAD value from the ground-based image sensor. Methods: A variable rate N application based on the decision making system was performed using a sensor-based variable rate nitrogen application system. To validate the nitrogen application decision making system based on the SPAD values, the developed N recommendation was compared with another conventional N recommendation. Results: Sensor-based variable rate nitrogen application was performed. The nitrogen deficiency level was measured using the image sensor system. Then, a variable rate application was run using the decision model and real-ti me control. Conclusions: These results would be useful for nitrogen management of corn in the field. The developed nitrogen application decision making system worked well, when considering the SPAD value estimation.

Distribution Characteristics of Total Nitrogen Components in Streams by Watershed Characteristics (유역특성에 따른 하천에서의 존재형태별 질소 분포 특성 비교)

  • Park, Jihyoung;Sohn, Sumin;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.503-511
    • /
    • 2014
  • The temporal and spatial analyses of total nitrogen (TN) fractionation were conducted in order to understand 1) total nitrogen components in streams and 2) their patterns in rainy and dry seasons. The result showed that the concentration of nitrogen components in stream water was lower in non-urban area and getting higher in urban area. Dissolved total nitrogen (DTN) was 95~97.7% of total nitrogen in streams, and the proportion of dissolved organic nitrogen (DON) and ammonia nitrogen ($NH_3-N$) was higher with increasing urban area. The concentration of total nitrogen and nitrate nitrogen ($NO_3-N$) were highest in winter among four seasons. The result was showed that concentration of $NH_3-N$ was same variation as concentrations of TN and $NO_3-N$ in urban-rural complex and urban areas, except rural areas. During rainy season, concentrations of particulate organic nitrogen (PON) and $NH_3-N$ increased in rural areas and decreased in both urban-rural complex and urban areas. Correlation between total nitrogen components and land uses was positively correlated with site > paddy, and negatively correlated with forest. The variation of total nitrogen concentration was determined by $NO_3-N$ in non-urban areas, by $NO_3-N$ and $NH_3-N$ in urban-rural complex and by $NH_3-N$ in the urban areas.

Effect of Nitrogen Application Levels on Nitrate Concentration in Soil Solution under Plastic Film House

  • Lee, Chang Hoon;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.30-35
    • /
    • 2015
  • This study was conducted to investigate investigated the effect of nitrogen fertilizer on nitrate concentration in soil solution and to determine the relationship between yield and nitrate concentration in soil solution for cucumber cultivation under plastic film house. Nitrogen as urea was applied at rates of 0, 120, 240, 360, and $480kg\;N\;ha^{-1}$ as an additional fertilizer by trickle irrigation during cucumber cultivation. Monitoring of nitrate concentration in soil solution was investigated using porous cups at 25 cm depth under soil surface. Nitrate concentration in soil solution increased with increasing the rate of additional nitrogen. Correlation coefficient between EC value and nitrate concentration was positive in soil and soil solution (p<0.05). An additional nitrogen of about $300kg\;ha^{-1}$ was shown the highest yield of cucumber, and improved yield by 5% compared to N recommendation of $240kg\;N\;ha^{-1}$. The highest yield was determined at nitrate concentration of $82mg\;L^{-1}$ in soil solution by regression equation ($Y=74.2+0.73X+0.000504X^2$, $R^2=0.629^*$). These results means indicate that nitrate concentration in soil solution would be useful method to rapid determination for additional nitrogen during cucumber cultivation under plastic film house.

Investigation of LN2 Lubrication Effect in Cryogenic Machining -Part 3: Nitrogen Lubrication Mechanism related to Chip Microstructures- (초 냉각 가공에서의 LN2 의 감찰 효과 연구 -절삭 칩 미세 구조에 관한 나이트로젠 감찰-)

  • 전성찬;정우철
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.05a
    • /
    • pp.221-225
    • /
    • 2002
  • Machinability improvement by the use of liquid nitrogen in cryogenic machining has been reported in various studies. This has been mostly attributed to the cooling effect of liquid nitrogen. However, No study has been found in discussion on whether liquid nitrogen possesses lubrication effect in cryogenic cutting. This paper presents lubrication mechanism related to chip microstructure. The friction reduction was further reflected In larger shear angle and less secondary deformation in the chip microstructures.

  • PDF

Yield of Rice, Analysis of Economics and Environmental Impact in Duck-Paddy Rice (오리제초 수도작의 벼 수량, 경제성 및 환경친화성 평가)

  • 손상목;김영호;임경수
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.3
    • /
    • pp.45-71
    • /
    • 2001
  • The duck-rice forming system is increasingly spread up throughout Korea since 1992. It is discussed the rice field, rice quality, weed and pest management in the duck-rice weeding system compared to conventional farming system. Moreover the optimizing duck population, system management and fertilizer application rate were reported. Energy input and output by duck-rice farming system were carefully compared with those of low input sustainable paddy field and conventional farming paddy field. To find out the environmentally sound function of duck-rice system, the total nitrogen in paddy soil and paddy water, and nitrogen cycle in paddy rice cultivation system were analysed. finally the input and output were calculated, and ecological characteristic were determined in terms of nitrogen balance, labor input, animal input, renewable energy input, turnover of soil organic matter, energy loss, non-renewable indirect and direct energy input. It was concluded duck-rice weeding system could be recommended in terms of net only environmentally sound, but also farmer's income. But there are still some research needs for successful adaption of duck-rice farming to investigate to determine the optimal population of duck in rice paddy field unit, release time of duckling, duck management after release, and strategy for duck marketing and duck processing.

  • PDF

Map-based Variable Rate Application of Nitrogen Using a Multi-Spectral Image Sensor (멀티스펙트랄 이미지 센서를 이용한 전자 지도 기반 변량 질소 살포)

  • Noh, Hyun-Kwon;Zhang, Qin
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • Site-specific N application for corn is one of the precision crop management. To implement the site-specific N application, various nitrogen stress sensing methods, including aerial image, tissue analysis, soil sampling analysis, and SPAD meter readings, have been used. Use of side-dressing, an efficient nitrogen application method than a uniform application in either late fall or early spring, relies mainly on the capability of nitrogen deficiency detection. This paper presents map-based variable rate nitrogen application based using a multi-spectral corn nitrogen deficiency(CND) sensor. This sensor assess the nitrogen stress by means of the estimated SPAD reading calculated from the corn leave reflectance. The estimated SPAD value from the CND sensor system and location information form DGPS of each field block was combined into the field map using a ArcView program. Then this map was converted into a raster file for a map-based variable rate application software. The relative SPAD (RSPAD = SPAD over reference SPAD) was investigated 2 weeks after the treatments. The results showed that the map-based variable rate application system was feasible.

Nitrogen budget management for preventing eutrophication in watershed (수계 내 부영양화 방지를 위한 질소 수지 관리)

  • Yun, Dong-Min;Min, Jee-Eun;Park, Jae-Woo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.819-822
    • /
    • 2008
  • Nitrogen budgets in Korea in 2005 were estimated using a mass balance approach. Major nitrogen fluxes were divided into three section: cites, agricultural area, and forest. It contains nitrogen input 21 precent more than the previous research in 2002. Especially the change of government plans affect nitrogen budget.

  • PDF

Effect of High Nitrogen Application on Two Components of Dark Respiration in a Rice Cultivar Takanari

  • Akita, Shigemi;Lee, Kwang-hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.4
    • /
    • pp.323-327
    • /
    • 2002
  • Plant growth and the two components of respiration, growth and maintenance, were compared between low and high nitrogen applications in hydroponic culture on a high-yielding rice cultivar 'Takanari' (Oryza sativa L.). Grain yield decreased by high nitrogen application, and thus this cultivar has low adaptability to nitrogen. Growth efficiency (GE) and net assimilation rate (NAR) were lower in the high-nitrogen plot. The maintenance coefficient (m) and growth coefficient (g) of dark respiration were 0.0111 $d^{-1}$ and 0.196 in the low-nitrogen plot and 0.0166 $d^{-1}$ and 0.237 in the high-nitrogen plot, respectively. Thus, high nitrogen application increased both g and m. Calculated $R_m$ (maintenance respiration rate) was 70 and 90% of total respiration rate at heading, respectively. The significance of nitrogen adaptability and g was discussed.

Relationship between Vegetation Composition and Dissolved Nitrogen in Wetlands of Higashi-Hiroshima, West Japan

  • Miandoab, Azam Haidary;Nakane, Kaneyuki
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.209-223
    • /
    • 2007
  • Twenty-four wetlands located in Higashi-Hiroshima City in West Japan were selected for this study in order to investigate both the relationship between aquatic plant composition and environmental conditions; and the relationship between changing land use patterns in the catchments and the concentration of different forms of nitrogen in the wetlands. The dominant and subdominant species which comprised the principal vegetation were determined based on a vegetation census conducted in each wetland during the growing season from June to August, 2006. The seasonal variations of water quality factors (pH, electrical conductivity, turbidity, dissolved oxygen, total dissolved solid, and temperature) and different forms of nitrogen such as nitrite, nitrate, ammonium, total nitrogen, dissolved organic nitrogen and dissolved inorganic nitrogen concentrations were analyzed as important indicators of water quality for the surface water of the wetlands. The surveyed wetlands were classified into three types (non-disturbed wetlands, moderately-disturbed wetlands and highly-disturbed wetlands), based on the degree of human disturbance to their catchment areas. An analysis of variance indicated that there was a significant difference among the wetland groups in the annual mean values of electrical conductivity, total dissolved solids, total nitrogen, nitrite, dissolved inorganic nitrogen and dissolved organic nitrogen. Classification of the wetlands into three groups has revealed a pattern of changes in the composition of plant species in the wetlands and a pattern of changes in nitrogen concentrations. A majority of the non-disturbed wetlands were characterized by Brasenia schrebi and Trapa bispinosa as dominant; with Potamogeton fryeri and Iris pesudacorus as sub-dominant species. For most of the moderately-disturbed wetlands, Brasenia schrebi were shown to be a dominant species; Elocheriss kuriguwai and Phragmites australis were observed as sub-dominant species. For a majority of the highly-disturbed wetlands, Typha latifolia and T. angustifolia were observed as dominant species, and Nymphea tetragona as the sub-dominant species in the study area. An analysis of land use and water quality factors indicated that forest area played a considerable role in reducing the concentration of nutrients, and can act as a sink for surface/subsurface nutrient inputs flowing into wetland water, anchor the soil, and lower erosion rates into wetlands.

Effect of Long Term Fertilization on Soil Carbon and Nitrogen Pools in Paddy Soil

  • Lee, Chang Hoon;Jung, Ki Youl;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak;Kim, Pil Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.216-222
    • /
    • 2013
  • Fertilizer management has the potential to promote the storage of carbon and nitrogen in agricultural soils and thus may contribute to crop sustainability and mitigation of global warming. In this study, the effects of fertilizer practices [no fertilizer (Control), chemical fertilizer (NPK), Compost, and chemical fertilizer plus compost] on soil total carbon (TC) and total nitrogen (TN) contents in inner soil profiles of paddy soil at 0-60 cm depth were examined by using long-term field experimental site at $42^{nd}$ years after installation. TC and TN concentrations of the treatments which included N input (NPK, Compost, NPK+Compost) in plow layer (0-15 cm) ranged from 19.0 to 26.4 g $kg^{-1}$ and 2.15 to 2.53 g $kg^{-1}$, respectively. Compared with control treatment, SOC (soil organic C) and TN concentrations were increased by 24.1 and 31.0%, 57.6 and 49.7%, and 72.2 and 54.5% for NPK, Compost, and NPK+Compost, respectively. However, long term fertilization significantly influenced TC concentration and pools to 30 cm depth. TC and TN pools for NPK, Compost, NPK+Compost in 0-30 cm depth ranged from 44.8 to 56.8 Mg $ha^{-1}$ and 5.78 to 6.49 Mg $ha^{-1}$, respectively. TC and TN pools were greater by 10.5 and 21.4%, 30.3 and 29.6%, and 39.9 and 36.3% in N input treatments (NPK, Compost, NPK+Compost) than in control treatment. These resulted from the formation and stability of aggregate in paddy soil with continuous mono rice cultivation. Therefore, fertilization practice could contribute to the storage of C and N in paddy soil, especially, organic amendments with chemical fertilizers may be alternative practices to sequester carbon and nitrogen in agricultural soil.