• Title/Summary/Keyword: nitrogen leaching

Search Result 119, Processing Time 0.031 seconds

Nutrient Leaching and Crop Uptake in Weighing Lysimeter Planted with Soybean as Affected by Water Management (중량식 라이시미터에서 콩 재배시 물관리 방법에 의한 양분의 용탈과 작물 흡수)

  • Lee, Ye-Jin;Han, Kyung-Hwa;Lee, Seul-Bi;Sung, Jwa-Kyung;Song, Yo-Sung;Lee, Deog-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.147-153
    • /
    • 2017
  • BACKGROUND: Soil water content strongly depends on weather condition and irrigation, and it could influence on crop nutrient use efficiency. This study was performed to assess nutrient uptake of soybean by soil water condition. METHODS AND RESULTS: In this study, nutrient leaching and crop uptake as affacted by water management practice was investigated using weighing lysimeter which is located in National institute of agricultural science, Wanju, Jeonbuk province from June 2015 to October 2016. Water supply for soybean (cv. Daewon) was managed with irrigation and rainfall. Nitrate leaching was greatest in the rainfall treatment at early July 2016. Yield of soybean in the rainfall treatment was only 25% compared to the irrigation due to the drought at flowering and podding period. The uptake of nitrogen was considerably reduced by drought whereas the uptake of phosphorus and potassium was less affected by drought. CONCLUSION: It was proven that nitrogen loss and uptake were dependent on soil water condition. Therefore, irrigation water management to maintain available soil moisture capacity is critical to nitrogen uptake and yield of soybean.

Behavior of NO3-N Derived from Pig Manure in Soil (돈분(豚糞)에서 유래(由來)한 질산태질소(窒酸態窒素)의 토양(土壤)중 행동(行動))

  • Yun, Sun-Gang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.353-359
    • /
    • 1996
  • Micro plot study was conducted to elucidate the behavior of nitrogen derived from animal manure in soil and to obtain the fundamental information on animal waste management. Soils used in this experiment were sandy loam and loam. Soil water samplers (1m length ceramic cup tube) were installed at 90cm depth of soil to collect the percolate. Fresh and fermented pig manure were applied at the rate of 0, 50, 100 ton per ha. Maize was grown to evaluate the effect of crop on nitrogen behavior through soil profile. Concentration of nitrate nitrogen in percolate increased by application of pig manure. This trend was more obvious at the loam with fermented pig manure than sandy loam with fresh pig manure treatment. The concentration of nitrate nitrogen was lower under the maize cultivation than bare soil condition by 64.6-68.9%. Concentration of Ca, Mg and Na of soil and percolate increased as nitrate nitrogen concentration increased. The equivalent ratio of cation to nitrate nitrogen of percolate was increased by application of pig manure. This result showed that canon leaching was accompanied by nitrate nitrogen. Concentration of nitrate nitrogen of subsurface soil was increased by pig manure application.

  • PDF

The Selective Leaching of Al-Ni Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법에 의하여 제조된 Al-Ni 합금 나노분말의 선택적 침출)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Chang, Han-Kwon;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.308-313
    • /
    • 2008
  • Al-Ni alloy nano powders have been produced by the electrical explosion of Ni-plated Al wire. The porous nano particles were prepared by leaching for Al-Ni alloy nano powders in 20wt% NaOH aqueous solution. The structural properties of leached porous nano powder were investigated by nitrogen physisorption, X-ray diffraction (XRD) and transmission Microscope (TEM). The surface areas of the leached powders were increased with amounts of AI in alloys. The pore size distributions of these powders were exhibited maxima at range of pore diameters 3.0 to 3.5 nm from the desorption isotherm. The maximum values of those were decreased with amounts of Al in alloys.

Nutrient Behavior in an Upland Field of Cabbage Adjacent to the River (하천변 양배추 밭에서의 영양물질의 거동)

  • Song, Chul-Min;Kim, Jin-Soo;Jang, Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.65-71
    • /
    • 2010
  • This study was conducted to investigate the dynamics of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in outflow from a cabbage farmland in a mixed land-use watershed. The TN concentrations in groundwater showed twice peaks in late July 2006 and late March 2007 (3.8, 4.7 mg/L, respectively), when it rained shortly after fertilizer application, indicating that nitrogen leaching is greatly influenced by fertilization and rainfall. The mean concentrations of TN and $NO_3$-N in surface water were not significantly higher than those in groundwater, while the mean concentrations of TP and $PO_4$-P in surface water were significantly (p < 0.05) were higher than those in groundwater. The TN concentrations in groundwater were generally higher than those in surface water during fertilization and early growing season due to the effect of fertilization, but vice versa in the other periods. In contrast, the TP concentrations in groundwater were always lower than those in surface water due to the sorption of particulate phosphorous by soil. The ratio of TN load in baseflow to that in total TN load (39 %) was much greater than the TP ratio (7 %), suggesting that baseflow contribute to nitrogen export. Therefore, proper fertilization management should be taken to reduce nitrogen load through baseflow.

On-field Crop Stress Detection System Using Multi-spectral Imaging Sensor

  • Kim, Yunseop;Reid, John F.;Hansen, Alan;Zhang, Qin
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.88-94
    • /
    • 2000
  • Nitrogen (N) management is critical for corn production. On the other hand, N leaching into the groundwater creates serious environmental problems. There is a demand for sensors that can assess the plant N deficiency throughout the growing season to allow producers to reach their production goals, while maintaining environmental quality. This paper reports on the performance of a vision-based reflectance sensor for real-time assessment of N stress level of corn crops. Data were collected representing the changes in crop reflectance in various spectral ranges over several stages of development in the growing season. The performance of this non-contact sensor was validated under various field conditions with reference measurement from a Minolta SPAD meter and stepped nitrogen treatments.

  • PDF

Effects of Persicaria thunbergii on Nitrogen Retention and Loss in Wetland Microcosms (습지 미소생태계에서 질소 보유와 제거에 대한 고마리 ( Persicaria thunbergii ) 의 효과)

  • Woo, Yeun-Kyung;Eun-Jin Park;Dowon Lee;Kye Song Lee
    • The Korean Journal of Ecology
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 1996
  • Growth and nitrogen retention of Persicaria thunbergii were investigated in the wetland microcosms which contained the plants growing on soil bed. Nitrogen solution was supplied to the microcosms with the same amount of $NH_4^{+}-N\; and\; NO_3^{-}-N$ at the rates of 0.00, 0.78, 1.57, 3.14g $N{\cdot}m^{-2}{\cdor}wk^{-1}$ from May 1 to August 31, 1995. The solution was detained for 5 days to react with soil and plant and then allowed to leach. The contents of NH_4^{+}-N\;and\; NO_3^{-}-N$ in the leachate, total Kjeldahl nitrogen, plant biomass, and soil characteristics were determined. Nitrogen retained by plant was estimated as the increment of TKN in plant biomass. The addition of 0.78 and 1.57g $N{\cdot}m^{-2}{\cdot}wk^{-1}$ resulted in significant increase of plant biomass. However, plant growth was inhibited when nitrogen was added at the rate of 3.14g $N{\cdot}m^{-2}{\cdot}wk^{-1}$. Overall, the plant biomass was positively correlated with the amount of nitrogen retained by plant and soil system. The amounts of $NO_3^{-}-N$ leached from the microcosms were 5~10 times higher than those of $NH_4^{+}-N$. While total nitrogen added ranged from 143.2 to 576.5g $N/m^2$, total leaching loss of inorganic nitrogen and nitrogen retained by plant was as little as 1.04~22.71g $N/m^2$, and 5.46~12.91g $N/m^2$, respectively. Then, the plant seemed to contribute to KDICical and microbial immobilization of nitrogen in the soil. Finally, it is suggested that a large portion of nitrogen added was lost into the air by denitrification and volatilizaton, and / or leached in organic forms.

  • PDF

A Case Study on the Farm Preference and the Use of Livestock Feces (가축분뇨 이용 및 농가 선호도에 관한 조사연구)

  • Kwon, Sung-Ku;Yoo, Duck-Ki
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.3
    • /
    • pp.249-264
    • /
    • 2004
  • High yield arable and crop farming demands a temporally and quantitatively determined application of plant nutrients according to field and culture. The nutrients may come from commercial fertilizers or from animal wastes. Regarding the dangers to soil, water and air, which come from current agricultural application measures for nitrogen, a sectoral approach for a nonpolluting liquid manure utilization can-not be used ally longer. An integrated system approach has to be found, leading to a drastic improvement of nutrient utilization and hence to a considerably reduced nutrient use. This can be only expected, if the organic manure can be applicated at times, when losses through leaching and volatilization can be minimized.

  • PDF

Effect of Soil Textures on Fruit Yield, Nitrogen and Water Use Efficiencies of Cucumber Plant as Affected by Subsurface Drip Fertigation in the Greenhouse

  • Lim, Tae-Jun;Park, Jin-Myeon;Park, Young-Eun;Lee, Seong-Eun;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.372-378
    • /
    • 2015
  • Growing crops under different soil textures may affect crop growth and yield because of soil N availability, soil N leaching, and plant N uptake. The objective of this study was to evaluate effects of three different soils (sandy loam, loam, and clay loam) on cucumber (Cucumis sativus L.) yield, nitrogen (N) use efficiency (NUE), and water use efficiency (WUE) by subsurface drip fertigation in the greenhouse. Three different soil textures are sandy loam, loam, and clay loam with 3 replications. The dimension of each lysimeter was $1.0m(W){\times}1.5m(L){\times}1.0m(H)$. Cucumber was transplanted on April $8^{th}$ and Aug $16^{th}$ in 2011. The subsurface drip line and tensiometer was installed at 30 and 20 cm soil depth, respectively. An irrigation with $100mg\;NL^{-1}$ concentration was automatically applied when the tensiometer reading was 10 kPa. Volumetric soil water content for cucumber cultivation was the highest in 30 cm soil depth regardless of soil texture and was lowered when soil depth was deeper. The volumetric soil water contents at soil depths of 10, 30, 50, and 70 cm were the highest at clay loam, followed by loam, and sandy loam. The growth of cucumber at the $50^{th}$ day after transplanting was the lowest at sandy loam. Cucumber fruit yields were similar for all three soil textures. The highest amount of water use at sandy loam was observed. Nitrogen and water use efficiencies for cucumber were higher for clay loam, followed by loam and sandy loam, while the amount of N leaching was the greatest under sandy loam, followed by loam, and clay loam. Overall, growing cucumber on either loam or clay loam is better than sandy loam if subsurface drip fertigation is used in the greenhouse.

Assessment of Nitrogen Fate in the Soil by Different Application Methods of Digestate (혐기성 소화액의 농지환원에 따른 질소 거동)

  • Nkombo, Laure Lysette Chimi;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.35-45
    • /
    • 2021
  • Digestate or slurry produced from anaerobic digestion is mostly applied to crop lands for its disposal and recovering nutrients. However, minimizing nitrogen losses following field application of the digestate is important for maximizing the plant's nitrogen uptake and reducing environmental concerns. This study was conducted to assess the effects of three different biogas digestate application techniques (sawdust mixed with digestate (SSD), the hole application method (HA), and digestate injected in the soil (SD)) on nitrate leaching potential in the soil. A pot laboratory experiment was conducted at room temperature of 25 ± 2 ℃ for 107 days. The experimental results showed that sawdust application method turned out to be appropriate for quick immobilization of surplus N in the form of microbial biomass N, reflecting its lower total nitrogen and NH4-N contents and low pH. The NH4-N and total nitrogen fate in the soil fertilized with manure showed no statistically significant (p > 0.05) differences between the different methods applied during the incubation time under room temperature. In contrast, NO3-N concentration indicates significant reduction in sawdust treatment (p < 0.05) compared to the control and other application methods. However, the soil sawdust mixed with digestate was more effective than the other methods, because of the cumulative labile carbon contents of the amendment, which implies soil net N immobilization.

Studies on the Leaching of the Constituents in Paddy Soil -III. Effects of Rice Straw on the Leaching of the Constituents in Paddy Soil (논 토양성분(土壤成分)의 용탈(溶脫)에 관(關)한 연구(硏究) -III. 논 토양(土壤) 화학성분(化學成分)의 용탈(溶脫)에 미치는 볏짚의 영향(影響))

  • Kim, Kwang-Sik;Kim, Yong-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.311-317
    • /
    • 1983
  • These studies were carried out to investigate the effects of rice straw on the leaching of chemical constituents in paddy soil. Rice plants were cultured in paddy soil to which rice straw was applied and then chemical properties of percolated water were analysed. The results were as follows. The leaching of calcium and magnesium was affected by rice straw application in the early stages of plant growth and by rice root activity in the late stages. The application of the straw promoted the reduction of the soil followed by increasing the leaching of iron and manganese. The leaching of potassium, ammonium-nitrogen and chloride was not due to the application of rice straw and the leaching of carbon dioxide increased with the application of rice straw, at the same time chemical properties seemed to be affected by rice root activity. Generally, cation and anion leached in the percolated water were equivalent. Calcium, magnesium, Fe as cation and $HCO_3$, $SO_4{^{-2}}$ as anion were important constituents in the percolated water from paddy soil.

  • PDF