• Title/Summary/Keyword: nitrogen flow rate

Search Result 410, Processing Time 0.025 seconds

The Effect of Chamber Pressure and Nitrogen Flow Rate on Deposition Characteristics of $(Ni_{0.8}Fe_{0.2})_{20}Ag_{80}$ Thin Films

  • Oh, T.S.;Choo, W.K.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.275-280
    • /
    • 1997
  • We have investigated the deposition characteristics of (Ni0.8Fe0.2)20Ag80 thin films as a function of chamber pressure and nitrogen flow rate with scanning electron microscopy(SEM), atomic force microscopy(AFM), XRD and $\alpha$-step. The deposition rate of these film is decreased with increasing the chamber pressure and the nitrogen flow rate. With raising the chamber pressure, the growth mode of thin film is changed from island growth to columnar one, which is probably due to energy of atom. Contrary, the nitrogen flow rate is raised, growth mode is changed from columnar to island one. According to the XRD patterns, the preferred orientation is inhibited as the nitrogen flow rate is kept above 10 sccm, but that is nearly independent on the chamber pressure. When the chamber pressure decrease or the nitrogen flow rate increase, phase separation into permoally and silver is occured.

  • PDF

The effect of nitrogen flow rate in a predeposition with Boron nitride (보론 나이트라이드를 사용하는 Predeposition 공정에서 질소류량의 영향)

  • 박형무;김충기
    • 전기의세계
    • /
    • v.30 no.4
    • /
    • pp.227-230
    • /
    • 1981
  • The variation of sheet resistance and the reduction of masking oxide thickness with the flow rate of nitrogen gas has been measured in Boron predeposition process with Planar Diffusion source, BN-975. At 900.deg. C, the sheet resistance varied as much as 75% when the nitrogen flow rate was changed from 0.4 liters/min to 2.0 liters/min. At 975.deg. C, however, only 12% of sheet resistance variation was observed under the same flow rate change. The reduction of masking oxide thickness at 975.deg. C for a 5 min predeposition was 600 nm when the nitrogen flow rate was 0.4 liters/min. When the flow rate incresased to 1.9 liters/min, however, only 100nm of masking oxide was consumed in a similar predeposition process.

  • PDF

Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings (질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구)

  • Gang, Yong-Jin;Jang, Yeong-Jun;Kim, Jong-Guk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF

Effects of Operating Parameters on the Removal Performance of Ammonia Nitrogen by Electrodialysis (전기투석에 의한 암모니아성질소의 제거 시 운전인자의 영향)

  • Yoon, Tae-Kyung;Lee, Gang-Choon;Jung, Byung-Gil;Han, Young-Rip;Sung, Nak-Chang
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.363-369
    • /
    • 2011
  • To evaluate the feasibility of electrodialysis for ammonia nitrogen removal from wastewater, the effects of operating parameters such as diluate concentration, applied voltage and flow rate on the removal of ammonia nitrogen were experimentally estimated. The removal rate was evaluated by measuring the elapsed time for ammonia nitrogen concentration of diluate to reach 20 mg/L. Limiting current density (LCD) linearly increased with ammonia nitrogen concentration and flow rate. The elapsed time was linearly proportional to initial concentration of diluate. Due to relatively large equivalent ion conductivity and ion mobility of ammonia nitrogen, the removal rate increased consistently with flow rate. Increase in the applied voltage gave positive effect to removal rate. From the operation of the electrodialysis module used in this research, the flow rate of 3.2 L/min and 80~90% of applied voltage for LCD are recommended as the optimum operating condition for the removal from high concentrate ammonia nitrogen solution.

Treatment Characteristics of Wastewater with Flow Rate Variation in Anaerobic-Aerobic Activated Sludge Process

  • Lee Min-Gyu;Suh Kuen-Hack;Hano Tadashi
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 1997
  • The treatment performances of anaerobic-aerobic activated sludge process were investigated under various operation conditions. The treatment system proposed in this study gave a relatively stable performance against hourly change of the flow rate and showed a satisfactory removal efficiency of nitrogen and phosphorus compounds under experimental conditions. The average removal efficiency of total nitrogen gradually decreased as the influent total nitrogen concentration was increased. High C/N ratio of the wastewater was required for the complete removal of nitrogen. Glucose as a carbon source was more efficient than starch and the removal ability for all components become higher with the increase of the fraction of glucose.

  • PDF

Treatment Characteristics of Wastewater with Flow Rate Variation in Anaerobic-Aerobic Activated Sludge Process

  • Min-Gyu Lee;Kue
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 1992
  • The treatment performances of anaerobic-aerobic activated sludge Process were investigated under various operation conditions. The treatment system proposed in this study gave a relatively stable performance against hourly change of the flow rate and showed a satisfactory removal efficiency of nitrogen and phosphorus compounds under experimental conditions. The average removal efficiency of total nitrogen gradually decreased as the influent total nitrogen concentration was increased. High C/N ratio of the wastewater was required for the complete removal of nitrogen. Glucose as a carbon source was more efficient than starch and the removal ability for all components become hither with the increase of the fraction of glucose.

  • PDF

Ammonia Nitrogen Removal in Wastewater Using Microwave Irradiation (마이크로웨이브를 이용한 폐수 내 고농도 암모니아성질소 제거)

  • Shin, Soyeun;Koo, Bonheung;Kim, Taehyun;Lee, Yuhak;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.486-490
    • /
    • 2014
  • Industrial use of microwave heating as an alternative to conventional heating is becoming popular mainly due to dramatic reductions in reaction time. Therefore, this work experimentally determined the effect of microwave irradiation on ammonia nitrogen removal in wastewater. The effects of air flow rate (0.3~0.9 L/min), treatment temperature ($70{\sim}100^{\circ}C$), and initial pH (9~11) were characterized. As the air flow rate increased from 0.3 to 0.9 L/min, the ammonia removal rate constant (k) increased from -0.6642 to $-1.0755min^{-1}$. As the temperature increased from 70 to $100^{\circ}C$, k increased -0.0338 to $-1.0755min^{-1}$. As the pH increased from 9 to 11, k increased -0.2443 to $-1.0755min^{-1}$. Ammonia removal was strongly dependent on temperature and pH rather than air flow rate. The results show that microwave irradiation is effective in ammonia nitrogen removal in wastewater due to advantages of fast and effective processing.

The study of Electrical Characteristic of Plasma by Nitrogen and Argon (질소와 아르곤 가스를 이용한 플라즈마의 전기적특성 연구)

  • 김동구;박기배;한상도;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.323-326
    • /
    • 1998
  • The current-voltage characteristic have been measured in a gas stabilized DC arc generated in a non-transferred arc plasma torch operating on a mixture of argon and nitrogen. Relation between voltage and current to these arcs has been examined by plasma power and current under different flow rates and gas mixture ratios. Firstly, the voltage and current of arc plasma used argon was measured and secondly, in argon-nitrogen mixed gas regime, the flow rate of nitrogen was increased slowly. When the flow rate of nitrogen was increased, electrode drop of potential was increased.

  • PDF

A Study on the Removal Characteristics of Dissolved Organic and Ammonia Compounds in PFR of Aerated Submerged Bio-film (ASBF) Reactor (PFR 공정의 ASBF 구조에 의한 유기물제거와 질산화의 영향에 대한 연구)

  • Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1265-1271
    • /
    • 2008
  • Aerated submerged bio-film (ASBF) pilot plant has been developed. The presented studies optimized an inexpensive method of enhanced wastewater treatment. The objectives of this research were to describe pilot scale experiments for efficient removal of dissolved organic and nitrogen compounds by using ASBF reactor in plug-flow reactor (PFR) and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophs and autotrophs in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. This direct gas-phase contact should increase the oxygen transfer rate into the bio-film, as well as increase the micro-climate mixing of water, nutrients, and waste products into and out of the bio-film. This research also investigated the efficiency of dissolved organic matter and ammonia nitrogen removals in the ASBF. As it was anticipated, nitrification activity was highest during periods when the flow rate was lower, but it seemed to decline during times when the flow rate was highest. And ammonia nitrogen removal rates were more sensitive than dissolved organic matter removal rates when flow rates exceeded 2.2 L/min.

Effect of $N_2$ and $O_2$ Properties of STS304 Stainless Steel Films Synthesized by Unbalanced Magnetron Sputtering Process (비대칭 마그네트론 스퍼터링법에 의해 합성된 STR304 스테인리스강 박막에서의 질소와 산소의 첨가 효가)

  • 김광석;이상율;김범석;한전건
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2001
  • N- or O-doped STS304 stainless films were synthesized by an unbalanced magnetron sputtering process with various argon and reactive gas ($N_2$, $O_2$) mixtures. These films were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and Knoop microhardness tester. The Results from X-ray diffraction (XRD) analysis showed that a STS304 stainless steel film synthesized without reactive gas using a bulk STS304 stainless steel target had a ferrite bcc structure ($\alpha$ phase), while the N-doped STS304 stainless film was consisted of a nitrogen supersaturated fcc structure, which hsa a strong ${\gamma}$(200) phase. In the O-doped films, oxide Phases ($Fe_2$$O_3$ and $Cr_2$$O_3$) were observed from the films synthesized under an excess $O_2$ flow rate of 9sccm. AES analysis showed that nitrogen content in N-doped films increased as the nitrogen flow rate increased. Approximately 43 at.%N in the N-doped film was measured using a nitrogen flow rate of 8sccm. In O-doped film, approximately 15 at.%O was detected using a $O_2$ flow rate of 12sccm. the Knoop microhardness value of N-doped film using a nitrogen flow rate of 8 sccm was measured to be approximately $H_{ k}$ 1200 and this high value could be attributed to the fine grain size and increased residual stress in the N-doped film.

  • PDF