• 제목/요약/키워드: nitrogen

검색결과 15,944건 처리시간 0.045초

한국여성의 단백질 섭취수준이 질소대사에 미치는 영향 (The Effect of Dietary Protein Levels on Nitrogen Metabolism in Young Korean Women)

  • 구재옥
    • Journal of Nutrition and Health
    • /
    • 제21권1호
    • /
    • pp.47-60
    • /
    • 1988
  • This study was performed to investigate the effect of dietary levels on protein metabolism in eight healthy Korean adult females. The 20-day metabolic study consisted of 2 day adaptation period and three 6-day experimental. Three experimental diets were low protein (LP : protein 44g), high protein(HP : protein 85g) and high animal protein (HAP : protein-84g). The apparent absorption and balance on nitrogen were significantly higher in high protein than in low protein diet. Nitrogen, absorption rate was about 75% for low protein and about 85% for high protein intake. The mean values of nitrogen balance were -1.28% for low protein and 0.78% for high protein diet. All the subjects were in negative nitrogen balance at the low protein intake while they were in positive nitrogen balance at the high protein intake. The mean daily urinary nitrogen excretion increased with increased level of protein intake. Urea nitrogen was the largest part of the urinary nitrogen. The ratio of urea nitrogen to total urinary nitrogen increased significantly for 79 to 85% as protein intake was doubled.

  • PDF

Nitrogen Harvest Index in Some Varieties of Mulberry, Morus spp.

  • Kumar, Jalaja S.;Chakraborty, Chumki;Sarkar, A.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제5권1호
    • /
    • pp.131-134
    • /
    • 2002
  • Mulberry being the only food of silkworm, Bombyx mori L., is of great economic importance to the silk industry, The success in cocoon production mainly depends on the supply of quality leaves in sufficient quantity. In mulberry, where the economic product is leaf, the uptake of nitrogen from soil is very heavy and high responses to application of nutrients have been reported. Nitrogen supports vegetative growth particularly the leaf biomass. Variation in nitrogen harvest index and other physiological and yield contributing traits were estimated in five mulberry genotypes. Considerable variation was observed for nitrogen harvest index, protein yield per plant and harvest index. The correlation studies indicated the protein yield per plant was significantly correlated with leaf yield, nitrogen content in leaf, nitrogen harvest index and harvest index. The broad sense heritability estimates revealed that harvest index showed highest heritability (88.07%) followed by nitrogen content (82.52%), protein yield (70.28%) and nitrogen harvest index (66.52%).

Patterns of Nitrogen Excretion in Growing Pigs

  • Lee, K.U.;Boyd, R.D.;Austic, R.E.;Ross, D.A.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제11권6호
    • /
    • pp.732-738
    • /
    • 1998
  • Three crossbred gilts weighing $61{\pm}2kg$ ($mean{\pm}SD$) and three gilts weighing $52{\pm}3kg $ on the day before the first treatment began (d -1) were used for each of two experiments (Exp. 1 and Exp. 2), respectively. In Exp. 1, all pigs were fed the experimental diet (CP 19%) from d -7 to the end of study (d 21) to verify that nitrogen retention is constant during the 21 -d period. In Exp. 2, pigs were fed the control diet (CP 15.5 %) from d -7 to d 8 and then the low-lysine diet from d 9 to d 16 in order to determine how rapidly dietary changes in amino acid composition results in a new equilibrium for nitrogen metabolism. The amount of urine nitrogen loss was not different over 21 days (p > 0.10). Rates of nitrogen retention were not different among pigs (p > 0.10) nor over time (p > 0.10). Average nitrogen retention during the period was 1.00 g/kg $BW^{0.75}$ per day. The apparent biological value was 41%, which did not change over the 3-week period (p > 0.10). The overall efficiency of nitrogen use for nitrogen retention was 35% (Exp. 1). The amount of nitrogen loss in urine and the efficiency of nitrogen utilization for nitrogen gain reached a new equilibrium within 2 to 3 d after the diet was changed. The low-lysine diet resulted in a 20% increase of nitrogen loss in urine (p < 0.001) and a 9% decline in efficiency of nitrogen use for nitrogen retention (p < 0.001). Nitrogen retention while the pigs were fed the control diet was also higher than the retention when pigs were fed the low lysine diet (p < 0.001). The efficiency of nitrogen use for nitrogen retention in pigs fed the control diet was 57% (Exp. 2), which was higher (p < 0.001) than that from pigs fed the low-lysine diets (52%).

Demonstration of constant nitrogen and energy amounts in pig urine under acidic conditions at room temperature and determination of the minimum amount of hydrochloric acid required for nitrogen preservation in pig urine

  • Jongkeon Kim;Bokyung Hong;Myung Ja Lee;Beob Gyun Kim
    • Animal Bioscience
    • /
    • 제36권3호
    • /
    • pp.492-497
    • /
    • 2023
  • Objective: The objectives were to demonstrate that the nitrogen and energy in pig urine supplemented with hydrochloric acid (HCl) are not volatilized and to determine the minimum amount of HCl required for nitrogen preservation from pig urine. Methods: In Exp. 1, urine samples of 3.0 L each with 5 different nitrogen concentrations were divided into 2 groups: 1.5 L of urine added with i) 100 mL of distilled water or ii) 100 mL of 6 N HCl. The urine in open plastic containers was placed on a laboratory table at room temperature for 10 d. The weight, nitrogen concentration, and gross energy concentration of the urine samples were determined every 2 d. In Exp. 2, three urine samples with different nitrogen concentrations were added with different amounts of 6 N HCl to obtain varying pH values. All urine samples were placed on a laboratory table for 5 d followed by nitrogen analysis. Results: Nitrogen amounts in urine supplemented with distilled water decreased linearly with time, whereas those supplemented with 6 N HCl remained constant. Based on the linear broken-line analysis, nitrogen was not volatilized at a pH below 5.12 (standard error = 0.71 and p<0.01). In Exp. 3, an equation for determining the amount of 6 N HCl to preserve nitrogen in pig urine was developed: additional 6 N HCl (mL) to 100 mL of urine = 3.83×nitrogen in urine (g/100 mL)+0.71 with R2 = 0.96 and p<0.01. If 62.7 g/d of nitrogen is excreted, at least 240 mL of 6 N HCl should be added to the urine collection container. Conclusion: Nitrogen in pig urine is not volatilized at a pH below 5.12 at room temperature and the amount of 6 N HCl required for nitrogen preservation may be up to 240 mL per day for a 110-kg pig depending on urinary nitrogen excretion.

Use of Hairy Vetch Green Manure as Nitrogen Fertilizer for Corn Production

  • Seo, Jong-ho;Lee, Ho-jin;Hur, Il-bong;Kim, Si-ju;Kim, Chung-kuk;Jo, Hyeon-suk
    • 한국작물학회지
    • /
    • 제45권5호
    • /
    • pp.294-299
    • /
    • 2000
  • Hairy vetch (Vicia villosa Roth) winter annual is very effective on reducing chemical nitrogen fertilizer for subsequent com by fixed organic green manure nitrogen fixed during hairy vetch growth. In this experiment, hairy vetch produced above-ground dry matter of 5 ton/ha, nitrogen yield 200 kgN/ha, at com planting on the average during 1997 and 1998. Changes in com yield and nitrogen uptake for two years were investigated after application of nitrogen fertilizer 0, 60, 120, 180, 240 kgN/ha on plot of winter fallow and hairy vetch green manure, respectively. Nitrogen status such as ear-leaf N%, SPAD value at silk and dough stage, and com yield decreased in proportion to reduction of nitrogen fertilizer at winter fallow, but nitrogen status and yield of com were not different among nitrogen fertilizer rate at hairy vetch green manure. Com yield (total dry matter) at 0 kgN/ha plot of hairy vetch was 22, 20 ton/ha in 1997, 1998, respectively and com could produce more dry matter 9, 13 ton/ha by hairy vetch green manure compared with winter fallow under the condition of no nitrogen fertilizer in 1997, 1998, respectively. Com yield (total dry matter) at 60kgN/ha of hairy vetch green manure was higher than that of high N fertilizer rate such as 180, 240 kgN/ha of winter fallow. Nitrogen uptake of com at plot of hairy vetch-no nitrogen fertilizer slightly decreased than at plot of hairy vetch - nitrogen fertilizer, but com absorbed more nitrogen of 141, 159 kgN/ha by hairy vetch green manure compared with winter fallow under no nitrogen fertilizer condition in 1997, 1998, respectively. Nitrogen fertilizer reduction for com by hairy vetch green manure was 149, 161kgN/ha in 1997, 1998, respectively. Still more, com could absorb more soil nitrogen by nitrogen fertilizer 60kgN/ha of hairy vetch green manure than by high nitrogen fertilizer such as 180, 240 kgN/ha at winter fallow. It is concluded that nitrogen fertilizer for corn could be reduced by winter cultivation and soil incorporation of hairy vetch at com planting.

  • PDF

기체상 질소산화물을 포함한 2012~2014년도 대한민국 질소수지 연구 (Nitrogen Budget of South Korea Including Gaseous Nitrogen Oxides from 2012 to 2014)

  • 이한욱;어세연;박재우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권4호
    • /
    • pp.49-59
    • /
    • 2017
  • This study estimated the nitrogen budget, including gaseous nitrogen oxides ($NO_x$), of South Korea in 2012~2014. The nitrogen budget was classified into three categories: agricultural and livestock, forest, and city. To estimate the nitrogen budget, several input and output parameters were investigated, including deposition, fixation, irrigation, chemical fertilizer use, compost, fuel, denitrification, volatilization, runoff, crop uptake, leaching, and $NO_x$ emissions. The annual nitrogen inputs from 2012 to 2014 were 6,202,828, 6,137,708, and 6,022,379 ton/yr, respectively. The corresponding annual nitrogen outputs were 1,393,763, 1,380,406, and 1,360,819 ton/yr, respectively, signifying a slight decrease from 2012 to 2014. $NO_x$ was the parameter contributing to the nitrogen budget to the greatest extent. The annual ratios of $NO_x$ emissions by vehicles, power plants, and businesses were 0.31, 0.31, and 0.30 in 2012, 2013, and 2014, respectively. A change in government policy that prohibited the disposal of livestock manure and sewage sludge in the ocean from 2012 affected nitrogen budget profile. As a result, the ocean disposal ratio completely diminished, which differs from previous studies.

폐기물의 퇴비화 과정중 물질 변화;2. 질소화합물 변화 (Changes of Chemical Compounds off the Compost of Municipal Refuse;2. Changes in Nitrogen Compounds)

  • 서정윤
    • 한국환경농학회지
    • /
    • 제7권2호
    • /
    • pp.146-152
    • /
    • 1988
  • 도시 폐기물의 퇴비화 과정중 퇴비중의 질소 화합물 함량을 시기별로 조사한 결과 다음과 같다. 1. 총 질소, 유기성 질소 및 미생물 이용 가능 질소 함량은 거의 변화가 없었으며 미생물 이용 불가능 질소 함량은 약간 증가하였다. 그러나 총 질소, 유기성 질소 및 미생물 이용 가능 질소의 유효성분 함량은 감소하였으며 미생물 이용 불가능 질소의 유효성분 함량은 거의 일정하였다. 2. 암모늄태 질소 함량은 초기에 높았다가 퇴비화가 진행됨에 따라 감소 하였으며 이적을 한 후에는 다시 증가하다가 감소하였다. 3. 질산태 질소 함량은 암모늄태 질소 함량과 반대 경향을 보였다. 4. 유기물 중 유기성 질소 함량은 증가하였으며 초기에는 완만한 증가현상을 보이다가 9주와 21주 사이에 급격히 증가하였다. 5. $F{\"{o}}rster$ 방법에 의한 총 질소 함량이 Kjeldahl 방법에 의한 것보다 높았으며 Kjeldahl 방법에 의한 총 질소 함량이 $F{\"{o}}rster$ 방법에 의한 미생물 이용 가능 질소 함량보다 6% 높았다. 6. 30주 후 총 질소 손실량은 Kjeldahl 방법으로 측정한 결과 50% $F{\"{o}}rster$ 방법으로 측정한 결과 48% 이었으며 초기 2주 내에 급격한 질소 손실이 일어났다. 7 Kjeldahl 방법에 의한 총 질소, 미생물 이용 가능 질소, $F{\"{o}}rster$ 방법에 의한 총질소 및 미생물 이용 가능 질소 상호간에 유의적인 정(+)의 상관이 있었다.

  • PDF

Italian Rye Grass 초지군락의 청예처리빈도에 따른 생산성과 질소이용성 (Nitrogen Utility during the Population Development with Different Clipping Treatments on Italian Rye Grass Field)

  • 송승달
    • Journal of Plant Biology
    • /
    • 제22권3호
    • /
    • pp.63-69
    • /
    • 1979
  • The plant growth and net production, the nitrogen uptake and recycling, the nitrogen mobility and allocation to each organ, and the nitrogen utility from the Italian rye grass field during the population development were analyzed in comparison with different clipping treatments. The maximum dry matter standing crop and nitrogen quantity of harvest increased significantly, however, the annual amounts of dry matter and nitrogen assimilation showed little variations with increasing clipping frequencies. Plants treated with frequent clippings allocated relatively more nitrogen to leaves and less to roots during the experimental period. The amount of recycling of nitrogen decreased considerably due to frequent clippings. The annual averages of nitrogen utility indices changed in inverse relation to the nitrogen availability; such as 63, 58, 44 and 35 for C, A, M and J plots, respectively.

  • PDF

Effect of High Nitrogen Application on Two Components of Dark Respiration in a Rice Cultivar Takanari

  • Akita, Shigemi;Lee, Kwang-hong
    • 한국작물학회지
    • /
    • 제47권4호
    • /
    • pp.323-327
    • /
    • 2002
  • Plant growth and the two components of respiration, growth and maintenance, were compared between low and high nitrogen applications in hydroponic culture on a high-yielding rice cultivar 'Takanari' (Oryza sativa L.). Grain yield decreased by high nitrogen application, and thus this cultivar has low adaptability to nitrogen. Growth efficiency (GE) and net assimilation rate (NAR) were lower in the high-nitrogen plot. The maintenance coefficient (m) and growth coefficient (g) of dark respiration were 0.0111 $d^{-1}$ and 0.196 in the low-nitrogen plot and 0.0166 $d^{-1}$ and 0.237 in the high-nitrogen plot, respectively. Thus, high nitrogen application increased both g and m. Calculated $R_m$ (maintenance respiration rate) was 70 and 90% of total respiration rate at heading, respectively. The significance of nitrogen adaptability and g was discussed.

Growth Simulation of Ilpumbyeo under Korean Environment Using ORYZA2000: II Growth Simulation by New Genetic Coefficients

  • Lee Chung-Kuen;Shin Jae-Hoon;Shin Jin-Chul;Kim Duk-Su;Choi Kyung-Jin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2004년도 춘계 학술대회지
    • /
    • pp.102-103
    • /
    • 2004
  • [ $\bigcirc$ ] In the growth simulation without changing of module with ORYZA2000, dry matter, LAI and leaf nitrogen content(FNLV) were estimated well under high nitrogen applicated condition, but overestimated under low nitrogen applicated condition. $\bigcirc$ Nitrogen stress factor on the SLA was introduced into ORYZA2000 because especially overestimated LAI under low nitrogen applicated condition was originated from SLA decrease with leaf nitrogen(FNLV) decrease. $\bigcirc$ In the growth simulation with modified SLA modified module, LAI was estimated well under even low nitrogen applicated condition, but dry matter was hardly changed compared with default. $\bigcirc$ Simulated plant nitrogen content and dry matter have no clear difference between modules, but compared with observed values, panicle weight(WSO) and rough rice yield(WRR14) were overestimated under high nitrogen applicated because of lodging, pest, disease and low nitrogen use efficiency.

  • PDF