• Title/Summary/Keyword: nitriding treatment

Search Result 157, Processing Time 0.017 seconds

Formation of compound layers and Wear behavior of AISI4115 steels by gaseous nitriding process (AISI4115 기계구조용 합금강의 질화 가스분위기에 따른 화합물층의 형성 및 내마모특성)

  • Kim, Taehwan;Son, Seokwon;Cho, Kyuntaek;Lee, Kee-ahn;Lee, Won-beom
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.5
    • /
    • pp.267-277
    • /
    • 2021
  • Nitriding layers developed during gaseous nitriding of AISI4115 steels for the application of steel bushing part were investigated. The compound layer thickness of about 10㎛, 0.3mm of case depth under the same conditions, and conventional nitriding, nitrocarburizing, and controlled nitriding were performed in three methods. In the controlled nitriding, KN was controlled by measuring the hydrogen partial pressure. The nitrided samples were analyzed by micro Vickers hardness test, optical microscopy and scanning electron microscopy. The phases of compound layer were identified by X-ray diffraction and electron backscatter diffraction. The controlled nitriding specimen indicated the highest surface hardness of about 860 HV0.1. The compound layer of the conventional nitriding and nitrocarburizing specimen was formed with about 46% porous layer and 𝜺 + 𝜸' phase, and about 13% porous layer and about 80% 𝜸' phase were formed on the controlled nitriding specimen. As a result of the Ball-on-disk wear test, the worn mass loss of ball performed on the surface of the controlled nitriding specimen was the largest. The controlled nitriding specimen had the highest surface hardness due to the lowest porous percentage of compound layer, which improved the wear resistance.

A Study on the Plasma Nitriding Application for the Durability Improvement of the Exhaust Decoupler (배기계 디커플러의 내구 향상을 위한 플라즈마 질화에 관한 연구)

  • Hur, Deog-Jae;Kim, Sang-Sik;Chung, Tae-Jin;Kim, Do-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.157-163
    • /
    • 2006
  • This paper described the process of improving durability performance of the exhaust decoupler by the plasma nitriding. The properties of plasma nitriding treatment of AIS1304 stainless steel were tested using specimens before applying plasma nitriding to a mesh ring. In order to analyses the effect of plasma nitriding treatment on the mechanical properties, SEM(Scanning Electron Microscopes), roughness and hardness tester were used. Based on specimen plasma nitriding, we could find appropriate condition for application to the mesh ring of decoupler. To confirm the improved durability performance, we compared the number of cycles, which reaches to fracture, of the nitrided decoupler and that of the unnitrided decoupler by the bending cyclic test. In this test, the durability and wear resistance of the mesh ring are significantly improved by plasma nitriding treatment.

Effects of Low Temperature Plasma Nitriding Treatment on Corrosion behavior of Stainless Steel (스테인리스강의 내식성에 미치는 저온 플라즈마 질화의 영향)

  • Kim, H.G.;Bin, J.U.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.3-9
    • /
    • 2011
  • Plasma nitriding of stainless steels has been investigated over a range of temperature from 400 to $500^{\circ}C$ and time from 10 to 20 hours. Characterization of systematic materials was carried out in terms of mechanical properties and corrosion behaviors. The results showed that plasma nitriding conducted at low temperatures not only increased the surface hardness, but also improved the corrosion resistance of STS 316L, STS409L, and STS 420J2. It was found that plasma-nitriding treatment at $500^{\circ}C$ resulted in increasing the corrosion performance of STS 409L and STS 420J2, while STS 316L was observed with server and massive damage on surface due to the formation of CrN.

Behavior of Initial Formation of Iron Nitride on Carbon Steel at Low Pressure Gas Nitriding (저압가스질화에서 탄소강의 초기 화합물층 형성 거동)

  • Kim, Yoon-Kee;Kim, Sang-Gweon
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • Growth behaviors of iron-nitride on S45C steels at low pressure gas nitriding were examined. Surfaces of the steels covered with fine and porous oxide during the pre-oxidation using $N_2O$ gas. Well faceted particles connected with them were observed after 1 min nitriding. They grew steadily and filled inter-pores during additional nitriding process. From the X-ray diffraction analysis, ${\gamma}'$-iron nitride was dominantly formed at the initial stage but the amount of ${\varepsilon}$-iron nitride was rapidly increased as nitriding treatment time. The porous layer was formed on the particles and thickened up to half of nitride layer after 60 min nitriding. The observed growth behaviors were discussed in internal stress related with volume expansion involved in transforming from iron to iron-nitrides.

Effect of Pre-Treatment Characteristics on the Gas Nitriding of Stainless Steels (스테인리스강의 가스질화에 미치는 전처리의 영향)

  • Kim, H.G.;Kim, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.5
    • /
    • pp.278-282
    • /
    • 2004
  • Effect of pre-treatment on the gas nitriding process of austenitic stainless steels has been investigated and the following results were obtained. Minimum pre-treatment time was decreased to 5min with increasing treatment temperature from $200^{\circ}C$ to $600^{\circ}C$. Surface activation effect by the pre-treatment was maintained in the air up to holding time of 64hr, judging from the analysis result of gas nitrided specimens. The Depth of nitrided layer of STS 304 and 316 stainless steels were ranged from $5{\mu}m$ to $90{\mu}m$ at $440^{\circ}C{\sim}600^{\circ}C$. The X-ray diffraction intensity for austenitic stainless steels were increases as nitriding temperature from $440^{\circ}C$ to $600^{\circ}C$.

The Effect of Activated Nitrogen Species for Diffusion Rate during a Plasma Nitriding Process (플라즈마질화에서 발생기 질소와 질화 속도에 관한 연구)

  • Kim, Sang-Gweon;Kim, Sung-Wan;Brand, P.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.3
    • /
    • pp.150-155
    • /
    • 2010
  • Generally, plasma nitriding process has composed with a nitriding layer within glow discharge region occurred by energy exchange. The dissociations of nitrogen molecules are very difficult to make neutral atoms or ionic nitrogen species via glow discharge area. However, the captured electrons in which a double-folded screen with same potential cathode can stimulate and come out some single atoms or activated ionic species. It was showed an important thing that is called "hat is a dominant component in this nitriding process?" in plasma nitriding process and it can take an effective species for without compound layer. During a plasma nitriding process, it was able to estimate with analyzing and identification by optical emission spectroscopy (OES) study. And then we can make comparative studies on the nitrogen transfer with plasma nitriding and ATONA process using plasma diagnosis and metallurgical observation. From these observations, we can understand role of active species of nitrogen, like N, $N^+$, ${N_2}^+$, ${N_2}^*$ and $NH_x$-radical, in bulk plasma of each process. And the same time, during DC plasma nitriding and other processes, the species of FeN atom or any ionic nitride species were not detected by OES analyzing.

Development of Controlled Gas Nitriding Furnace(III) : Application of Controlled Gas Nitriding Process and Evaluation of Durability for SCR420H Annulus gear (질화포텐셜 제어 가스질화로 개발(III) : SCR420H 에널러스기어에 대한 제어질화 적용 및 내구성 평가)

  • Won-Beom Lee;Minjae Jung;Min-Sang Kwon;Taehwan Kim;Chulwoo Moon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.161-173
    • /
    • 2023
  • This study investigated the effects of KN and process time on the formation of a compound layer at a nitriding temperature of 540℃ for SCR420H material. As a result of controlled nitriding from 3 h to 20 h at KN 1.2 atm-1/2, compound layers were formed up to about 10 ㎛, and an effective hardening depth of about 460 ㎛ was obtained. Initially, an ε+γ' complex phase was formed, and the phase fraction changed over time, and finally, the fraction of ε phase decreased to less than 1%. With higher KN, the compound thickness increased, a pore layer was formed on the surface, and the surface hardness decreased. By applying the controlled nitriding process, it was possible to produce annulus gears with a compound thickness of 12.8 ㎛ and an ε phase of 5% or less. The annulus gears made through controlled nitriding were mounted on a 6-speed transmission and tested for durability. As a result, the durability test of 250,000 km was satisfied, and the transmission efficiency was also confirmed to be expected.

A study for Application of ion Nitriding on EHA Hydraulic Pump Parts (EHA 유압펌프 부품의 플라즈마 질화기술 적용에 관한 연구)

  • Kim Eun-Young;Kim Bomsok;Lee Sangyul
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.6
    • /
    • pp.234-240
    • /
    • 2005
  • In this study, ion nitriding of a EHA pump part made of AISI 4340 steel was performed under different applied power conditions to study the relationship between dimensional changes of specimens and the type of applied power source. Microstructures and micohardness distribution at different processing conditions were also examined. Duplex surface treatment of ion nitriding with the optimum process conditions to produce the minimum dimensional variation in a EHA pump part and a TiN thin film coating by unbalanced magnetron sputtering was performed and the specimens with a duplex surface treatment were subjected to a high speed wear test to evaluate the wear performance of EHA hydraulic pump parts with various surface treatment conditions. Results indicated that uniform and continuous surface layer with a minimum dimensional variation could be obtained by ion nitriding with bipolar mode power source and much enhanced wear characteristics with a duplex surface treatment could be obtained, compared with results from ion nitriding or single-layerd TiN coating specimens.

The Influence of Initial Structure on the Nitriding characteristics of Tool Steels in gasnitriding (공구강의 가스질화시 질화특성에 미치는 초기조직의 영향)

  • Kim, Y.H.;Kim, M.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.318-327
    • /
    • 1994
  • According to conventional nitriding of tool steels, it was very difficult to produce a high surface hardness. This study has been conducted to investigate the influence of initial structures on the nitriding characteristics of tool steels in gas-nitrided for the improvement in surface hardness. The specimens (SACM645, STD61 steels) have been quenching and tempering at various temperature and then gas-nitrided for 30, 45 and 60hr at 500, 530 and $550^{\circ}C$ respectively in gasatmosphere of 30%$NH_3-70%N_2$ As hardness of initial structure was higher, the nitriding layer was deeper and hardness of the nitriding layer was higher. Deeper nitriding layers was due to higher diffusion rate by fine initial microstructure. Also the reason of high surface hardness was associated with formation of dispersed fine carbonitrides of nitrides.

  • PDF

Effect of Nitriding on Fatigue Crack Initiation and Growth Rate in Ni-Cr-Mo Steel (SNCM강의 피로균열의 발생 및 전파속도에 미치는 질화처리의 영향)

  • Kim, Min-Gun;Lim, Bok-Kyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.6
    • /
    • pp.315-319
    • /
    • 2003
  • Effect of nitriding on fatigue crack initiation and growth rate has been studied in Ni-Cr-Mo steel. Specimens were nitrided at $860^{\circ}C$ for 15 hr. The fatigue limit of nitrided specimens were superior to those ofannea1ed($860^{\circ}C$, 15 hr) specimens. Based on detailed observations of slip band and micro crack initiation, it is concluded that the excellent fatigue limit of nitrided specimens is attributed to improved slip initiation resistance by nitriding. The characteristic of fatigue crack growth rate of nitrided specimens was investigated by comparing with those of annealed specimens. It was found that the crack growth rate was markedly decreased and the threshold stress intensity factor range was improved by nitriding. It is concluded that the excellent fatigue limit of nitrided specimens is also attributed to improved fatigue crack growth rate and threshold stress intensity factor range by nitriding.