• Title/Summary/Keyword: nitrate ($NO_3{^-}$)

Search Result 1,066, Processing Time 0.024 seconds

Method of Nitrate Nitrogen Determination for Plant, Soil and Water Analysis by E. coil Cells (E. coli 세포(細胞)를 이용한 식물(植物), 토양(土壤) 및 수질(水質)의 질산태(窒酸態) 질소(窒素) 분석방법(分析方法))

  • Sohn, Sang Mok;Kucke, Martin;Lee, Yoon Gun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.361-369
    • /
    • 1997
  • A microbiological nitrate determination method by E. coli is modified in Korea, using K12 wildtype, KCTC 1116, for the quantitative reduction of $NO_3{^-}$ to $NO_2{^-}$. The nitrate in plant, soil or water sample is determined spectrophotometrically after being diazotized with sulfaniamide and N-(1-naphthl)-ethlenediamine. The modified E. coli cell method and principle for nitrate determination using Korean wildtype E. coli strain is described, and cell culture and preparation of stock suspension for E. coli as well. This modified E. coli cell method can be managed simply and fast, it is suitable for the investigation of the large serials, it can be also automated and has a high degree of sensitivity up to 0.01ppm $NO_3{^-}-N$ in the sample solution. The applicability of the modified E. coli cell method has been tested for plant, soil and water analysis on a wide range of different samples. Recovery rates of added nitrate have been determined and comparisons with other standard nitrate analytical procedures have been carried out. The results with the modified E. coli cell method show high correlation ($r^2=0.98$) with those gained by the standard analytical procedures. The advantages and disadvantages of the method are also discussed to other nitrate determination methods.

  • PDF

Effects of Nitrite Exposure on Plasma Nitrite Levels and Hepatic Drug-metabolizing Enzymes in the Carp, Cyprinus carpio (아질산 노출이 이스라엘잉어 혈장내 아질산 농도 및 간장 약물대사효소에 미치는 영향)

  • 박관하;최상훈;김영길;김용호;최선남;김종배
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.2
    • /
    • pp.69-76
    • /
    • 2003
  • Effects of ambient nitrite, NO$_2$$\^$-/, at 1, 3, 10 and 30 mg/1, on the changes of plasma nitrite/nitrate and on hepatic drug - metabolizing enzyme activity were examined in the juvenile Israeli carp, Cyprinus carpio. When the fish were exposed to 1 and 3 mg/1 NO$_2$$\^$-/, there was an exposure duration-dependent increase in plasma NO$_2$$\^$-/ over the 96-hr period reaching 6∼7 fold excess the ambient concentration. In the fish exposed to 10 mg/1, a plateau concentration of less than 2-fold of the environment was attained in 12 hr. With 30 mg/1, however, the maximal plasma NO$_2$$\^$-/ was 41.25 mg/1 at 12 hr followed by a gradual decline. There was a concentration-dependent increase in methemoglobin (metHb) level in all NO$_2$$\^$-/ -exposed groups and a significant decrease in hematocrit value in 30 mg/l group after 96-hr exposure. Apart from the blunted increase in plasma NO$_2$$\^$-/ with higher NO$_2$$\^$-/ (10 and 30 mg/1) exposure, the ratio of plasma NO$_3$$\^$-/ to NO$_2$$\^$-/ was signifirantly higher in these groups compared to 1 and 3 mg/1. The imbalance in the plasma NO$_3$$\^$-//NO$_2$$\^$-/ at higher NO$_2$$\^$-/ exposure suggests a possible accelerated conversion of NO$_2$$\^$-/ to NO$_3$$\^$-/. Nitrite exposure did not affect the hepatic drug-metabolic activities in juvenile Israeli carp. All these data indicate that disposition of NO$_2$- differ depending upon exposed concentration and that metHb production may not be the exclusive toxic mechanism in carp.

Influences of Sulfate and Nitrate Application on Cadmium Sorption in Soils

  • Lee, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.352-357
    • /
    • 2001
  • Cadmium (Cd) has been identified as a potential contaminant in agricultural and environmental soils. Ionic condition in the soils is an important factor to influence Cd availability. In this study, the effect of sulfate or nitrate application on Cd sorption in acidic and calcareous soils was investigated. The Cd, sulfate $(SO_4)$, and nitrate $(NO_3)$ sources were solutions of $CdCl_2$, $K_2SO_4$, and $KNO_3$, respectively. The soil-solution system pH was affected by the application of sulfate or nitrate in both acidic and calcareous soil system, but there was not clear pH difference between pre- and simultaneous applications of sulfate or nitrate (PAS/PAN or SAS/SAN). Solution ionic strength (I) values were similar between the acid and calcareous soil systems after applying the Cd even though it was significantly different in the untreated control soils. However after applying the sulfate or nitrate, the I values increased and were always higher with SAS/SAN treatments. Solution Cd concentration also increased with the application of sulfate or nitrate. However, the Cd concentration in soil solution controlled by Cd sorption in the systems was different between PAS/PAN and SAS/SAN treatments only in the calcareous soil system, but not in the acidic soil system. The difference in Cd concentration between SAS/SAN and PAS/PAN in the calcareous systems may be caused by system pH, ionic strength, complexation, and predominately, competition of the $Cd^{2-}$ with the index $K^+$ ion. Potassium ion-Cd competition in the acidic soil system may be minimized because of the abundance of hydrogen ions.

  • PDF

A Triple-Probe Channel NO2S2-Macrocycle: Synthesis, Sensing Characteristics and Crystal Structure of Mercury(II) Nitrate Complex

  • Lee, Ji-Eun;Choi, Kyu-Seong;Seo, Moo-Lyong;Lee, Shim-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.2031-2035
    • /
    • 2010
  • A triple-probe channel type chemosensor based on an $NO_2S_2$-macrocycle functionalized with phenyltricyanovinyl group was synthesized and its sensing characteristics were examined. The pink-red solution of L changed selectively to pale yellow upon addition of $Hg^{2+}$. The selective fluorometric response of L to all the tested metal ions was studied. The results showed that a large enhancement of the fluorescence of L was observed only in the case of $Hg^{2+}$. In addition, L showed large anodic shift (~ 0.3 V) for the addition of excess $Hg^{2+}$. Through above three observed results by the different techniques, we confirmed that the proposed chemosensor acts as the multiple-probe channel sensing material. The crystal structure of mercury(II) nitrate complexs of L which shows a 1-D polymer network with a formula $[Hg_2(L)_2(NO_3)_2({\mu}-NO_3)_2]_n$ was also reported.

Criteria of Nitrate Concentration in Soil Solution and Leaf Petiole Juice for Fertigation of Cucumber under Greenhouse Cultivation in Gyeonggi region

  • Park, Jung-Soo;Roh, Ahn-Sung;Jang, Jae-Eun;Kang, Chang-Sung;Kim, Hee-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.295-304
    • /
    • 2015
  • To develop a technique for efficient management of fertility for cucumber in greenhouse, a quick test method to quantify nitrate ($NO_3{^-}$) content in soil solution and leaf petiole juice using a simple instrument that are easy to use for farmers was investigated. N fertilizer (urea) was applied at 0, 50, 100 and 200% levels of the recommended application rate from 30 days after transplanting to harvest by soil fertigation treatments. Stable results were obtained from analysis of nitrate ($NO_3{^-}$) using top $10^{th}$ or $11^{th}$ leaf petioles collected between 10 to 11 am in the morning. Under the semiforcing culture, $NO_3{^-}$ content of leaf petiole juice was highest at 60 days after transplanting (DAT) at all fertigation treatments. Appropriate $NO_3{^-}$content of leaf petiole juice was $2,418{\pm}78{\sim}2,668{\pm}118$ at 45 DAT, $3,032{\pm}90{\sim}3,332{\pm}63$ at 60 DAT, $2,709{\pm}50{\sim}3,158{\pm}155$ at 75 DAT, $2,535{\pm}49{\sim}2,907{\pm}83$ at 90 DAT, and $2,242{\pm}48mg\;L^{-1}$ at 105 DAT. In addition, appropriate $NO_3{^-}$ content of soil solution was $167{\pm}9{\sim}212{\pm}15$ at 45 DAT, $83{\pm}10{\sim}112{\pm}12$ at 60 DAT, $49{\pm}3{\sim}92{\pm}6$ at 75 DAT, $71{\pm}9{\sim}103{\pm}9$ at 90 DAT, and $73{\pm}9mg\;L^{-1}$ at 105 DAT. The cucumber yield at 100% N level of fertigation was $7,770kg\;10a^{-1}$ and no difference in yield was found at 200% N level of fertigation. However, there was 12% decrease in yield at 50% N fertigation and, 17% decrease at 0% N fertigation. Under retarding culture, $NO_3{^-}$ concentration of leaf petiole juice was highest at 55 days after transplanting (DAT) at all fertigation treatments. Appropriate $NO_3{^-}$ content of leaf petiole juice was $2,464{\pm}102{\sim}2,651{\pm}33$ at 45 DAT, $3,025{\pm}71{\sim}3,314{\pm}84$ at 55 DAT and $2,488{\pm}92mg\;L^{-1}$ at 65 DAT, respectively. Appropriate $NO_3{^-}$ content of soil solution was $111{\pm}10{\sim}155{\pm}14$ at 45 DAT, $93{\pm}7{\sim}147{\pm}14$ at 55 DAT, $67{\pm}4mg\;L^{-1}$at 65 DAT, respectively. The cucumber yield at 50% N fertigation was not different from $1,697kg\;10a^{-1}$ of 100% N fertigation level and even with that of the 200% N fertigation. However, there was 21% decrease in yield at 0% N fertigation.

Effects of Catalyst Metal and Substrate Temperature on a Flame Synthesis of Carbon Nanomaterials (화염을 이용한 탄소나노튜브와 나노섬유의 합성에 미치는 촉매금속 및 기판온도의 영향)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.27-33
    • /
    • 2003
  • Synthesis of carbon nanomaterials on a metal substrate by an ethylene fueled inverse diffusion flame was illustrated. Stainless steel plates were used for the catalytic metal substrate. The effects of catalyst metal particles were investigated through $Fe(NO_3){_3}$ (ferric nitrate, nonahydrate) and $Ni(NO_3){_2}$ (nickel nitrate, hexahydrate). Carbon nanotubes and nanofibers with diameters of $30{\sim}70nm$ were found on the substrate for the case of using SUS304 substrates only and using them with metal nitrates. In case of using metal nitrates, due to the easy activation of the metal particles, the formation and growth of carbon nanomaterials were occurred in the lower temperature region than that of using SUS304 substrates only.

  • PDF

Bioremediation by Denitrification in the Saturated Zone : Mathematical Model and Experiment

  • Lee Eun-Jung;Lee Kang-Kun;Kim Young;Ha Cheol-Yun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.393-396
    • /
    • 2005
  • The reactive transport model on the biologically mediated sequential nitrate transformation and its subsequent transport was developed and tested. This model was coded as a reaction module within the RT3D framework (Clement, 1997). Transports of the reasonable six mobile solutes (dissolved organic carbon, $O_2,\;{NO_3}^-,\;{NO_2}^-,\;N_2O,\;N_2$) and two immobile microbes were simulated. The simulation results gave a reasonable match with supposed transport pattern. For the next step, the developed model will be validated against experimental data.

  • PDF

Effect of Nitrogen Sources on the Yields and the Ionic Balance of Mulberry(Morus alba L.) Leaves (시용질소(施用窒素)의 형태(形態)가 뽕잎 생산량(生産量) 및 이온 균형(均衡)에 미치는 영향(影響))

  • Lee, Won-Chu;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.2
    • /
    • pp.117-127
    • /
    • 1982
  • Mulberry plants (Morus alba L.) were grown in pots with the following different nitrogen sources: ammonium sulphate, urea, ammonium nitrate, sodium nitrate + ammonium nitrate ($NO_3:NH_4$=2:1), and sodium nitrate. The effects of the nitrogen sources on mulberry yields, nitrogen recovery, distribution of ions and cation-anion balance (C-A) along leaf sequence and growth stage were investigated. The results were as follows: 1. Leaf yields and nitrogen recovery decreased with increasing $NO_3$-N application rates. 2. Relative cation contents in leaves in the early growth stages showed the following pattern : Na < Mg < Ca < K. However, the order of Ca and K reversed in the later stages. The order of anion contents chifted from $SO_4$ < $NO_3$ < Cl < $H_2PO_4$ in the early stages to $NO_3$ < Cl < $SO_4$ < $H_2PO_4$ in the later stages. 3. Contents of K, $H_2PO_4$, $SO_4$, $NO_3$, T-N and the sum of anion contents (${\sum}A$) were higher in upper leaves whereas Ca, Mg, Cl, the sum of cation contents (${\sum}C$) and (C-A) were higher in lower leaves. 4. When $NO_3$ in leaves decreased, Cl and K as counter-cations increased and consequently Ca decreased. 5. The (C-A) in leaves varied with leaf sequence and growth stage from 700 to 900 me/kg D.M.

  • PDF

Runoff Loss of NO3-N Derived from Pig Manure Under Upland Condition (돈분이 시용된 밭토양에서 질산태질소의 유거손실)

  • Yun, Sun-Gang;Park, Kwang-Lai;Kim, Min-Kyeong;Kim, Won-Il;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.158-164
    • /
    • 2001
  • The purpose of this study was to assess the runoff of nitrogen derived from pig manure under upland condition. Bare and maize cultivated conditions were compared to estimate the effect of plant on the runoff loss of nitrogen and other nutrients by application of pig manure. Soil used in this experiment was sandy loam, and the fermented pig manure was applied at the rate of 0, 50, and $100ton\;ha^{-1}$. The amount of runoff was measured after every rainfall and water samples were analyzed for nitrate and other cations. Runoff was increased with the rainfall, but was depended on the application rate of pig manure at both bare and maize cultivated plots. Concentrations of nitrate in runoff at 0, 50 and $100ton\;ha^{-1}$ application of pig manure were higher at the maize cultivated plots than those at bare plots by 86.9, 42.9, and 33.6%, respectively. However, total mass of nitrate by runoff loss was higher at the bare plot ranging from 1.34 to $3.15kg\;NO_3-N\;ha^{-1}$. The equivalent ratio of nitrate to sum of cations in runoff was higher at the bare plot than that of maize cultivated plots. The concentration of cations in runoff was in the order of K> Mg> Na> Ca.

  • PDF

Effects of Horse Manure Compost Application Level on the Productivity of Italian Ryegrass and Soil Nitrate Leaching (마분 퇴비 시용 수준이 이탈리안 라이그라스 생산성과 용탈수 성분에 미치는 영향)

  • Yoo, Ji-Hyun;Park, Nam-Geon;Woo, Jae-Hoon;Ahn, Hee-Kwon;Yang, Byoung-Chul
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.2
    • /
    • pp.117-122
    • /
    • 2020
  • This study was conducted to figure out the productivity of Italian ryegrass(IRG) and leaching water characteristics based on horse manure compost level in Jeju. This study was conducted for about six months. Six treatments were established : non-fertilizer(NF), chemical fertilizer 100%(CF), horse manure compost 50% and chemical fertilizer 50% combination(Combination), horse manure compost with 50% of nitrogen (50%), 100% of nitrogen(100%), 150% of nitrogen(150%). The highest amount of dry matter yield of IRG was revealed in CF(11,965±564 kg/ha), and both 150% and Combination were second(p<0.05). Nitrate leaching tended to increase until the third analysis and then decreased. There were not significantly differences among mean nitrate concentrations. The findings of the study suggest that horse manure compost with 50% of nitrogen be applied for IRG as basal fertilization and then 50% of chemical fertilizer be applied as top fertilization.