• Title/Summary/Keyword: nitrate

Search Result 3,279, Processing Time 0.029 seconds

Analysis of a Microbial Community Denitrying Nitrate to Nitrogen Gas in a Nitrate-Contaminated Aquifer

  • Jin-Hun, Kim;Bong-Ho, Son;Su-Yeol, Gwon;Seong-Uk, Eo;Yeong, Kim
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.175-178
    • /
    • 2004
  • Little study has been published specifically addressing the dynamics of nitrate reducing bacteria (NBR) during the bioremediation of nitrate-contaminated aquifer. In our previous study we successfully quantified fumarate-enhanced microbial nitrate reduction rate in a nitrate-contaminated aquifer by using a series of single-well push-pull tests (PPTs). In this study we analyzed the suspended population during PPTs. To monitor changes in the microbial community, PCR amplification of 16S rDNA genes and denaturing gradient gel electrophoresis (DGGE) were used to study the dynamics of the bacterial community in detail. Before the stimulation of NBR, the dominant DGGE bands obtained by PCR were affiliated with V-Proteobacteria consisting of Acinetobacter spp. and Pseudomonas fluorescens. However, as NBR biostimulation proceeded, the dominant patterns of DGGE bands changed, and they were affiliated with Azoarcus denitrificans Td-3 and Flavobacterium xanthum. Azoarcus denitrificans Td-3 is known to completely reduce nitrate to nitrogen gas. The series of single-well push-pull tests in this study should prove useful for conducting rapid, low-cost feasibility assessments for in situ denitrification and provide important information about which microorganisms play a key role in bioremediation of a nitrate contaminated aquifer.

  • PDF

Source Signature of Mass, Nitrate and Sulfate in Supermicron and Submicron Aerosols at Gosan Superstation on Jeju Island (제주 고산 조대입자와 미세입자의 질량, 질산염, 황산염 변화와 고농도 특성)

  • Lim, S.H.;Lee, M.;Lee, G.;Kang, K.S.
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.221-228
    • /
    • 2010
  • Aerosol particles with different size-cuts ($PM_{10}$, $PM_{2.5}$, and $PM_{1.0}$) were collected at Gosan Superstation on Jeju Island from August 2007 to June 2008. Mean concentrations of $PM_{10}$, $PM_{2.5}$ and $PM_{1.0}$ were $29.28{\mu}gm^{-3}$, $17.83{\mu}gm^{-3}$, and $14.30{\mu}gm^{-3}$, respectively. Soluble ions comprised 45.7%, 53.9%, and 60.3% of the total mass of $PM_{10}$, $PM_{2.5}$, and $PM_{1.0}$, respectively. While sulfate was the most dominant species of fine mode ($PM_{1.0}$), nitrate was enriched in coarse mode ($PM_{1.0-10}$). When the concentrations of coarse mode particles were greatly increased, nitrate tended to be enhanced in coarse mode with high calcium but low sulfate concentrations. During the high $PM_{1.0}$ events, however, nitrate was increased with sulfate at fine mode. Particularly, nitrate concentrations were substantially enhanced during high particle episodes, leading high ratios of nitrate to sulfate in air under northwest wind during wintertime. On the other hand, the levels of nitrate were lower than those of sulfate at average particle concentrations. The backward air mass trajectories indicated that nitrate concentrations were elevated in air arriving Gosan passing through Santung peninsula or near South Korea.

Bio-regeneration of Ion-exchange Resin for Treating Reverse Osmosis Concentrate (RO 농축폐액의 처리를 위한 이온교환수지의 생물재생)

  • Bae, Byung-Uk;Nam, Youn-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.517-523
    • /
    • 2014
  • In order to remove both nitrate and sulfate present in the concentrate of RO(reverse osmosis) process, a combined bio-regeneration and ion-exchange(IX) system was studied. For this purpose, both denitrifying bacteria(DNB) and sulfate reducing bacteria(SRB) were simultaneously cultivated in a bio-reactor under anaerobic conditions. When the IX column containing a nitrate-selective A520E resin was fully exhausted by nitrate and sulfate, the IX column was bio-regenerated by pumping the supernatant of the bio-reactor, which contains MLSS concentration of $125{\pm}25mg/L$, at the flowrate of 360 BV/hr. Even though the nitrate-selective A520E resin was used, the breakthrough curves of ionic species showed that sulfate was exhausted earlier than nitrate. The reason for this result is due to the fact that the concentration of sulfate in RO concentrate was 36 to 48 times higher than nitrate. The bio-reactor was successfully operated at a volumetric loading rate of 0.6 g $COD/l{\cdot}d$, nitrate-N loading rate of 0.13 g $NO_3{^-}-N/l{\cdot}d$, and sulfate loading rate of 0.08 g $SO_4{^{2-}}/l{\cdot}d$. The removal rate of SCOD, nitrate-N, sulfate was 90, 100, and 85%, respectively. When the virgin resin was fully exhausted and consecutively bio-regenerated for 2 days, 81% of nitrate and 93% of sulfate were reduced. When the virgin resin was repeatedly used up to 4 cycles of service and bio-regeneration, the ion-exchange capacity of bio-regenerated resin decreased to 95, 91, 88, and 81% of virgin resin.

The Structure of Econazole Nitrate (에코나졸 나이트레이트의 구조)

  • Seo, Il-Hwan;Jo, Seong-Il;Park, Gwon-Il
    • Korean Journal of Crystallography
    • /
    • v.1 no.1
    • /
    • pp.14-18
    • /
    • 1990
  • Econazole nitrate, 1-{2-[(4-chlorophenyl)methoxy]-2-(2,4-dichlorophenyl) ethy1}-1H-imidazole mono-nitrate.C18 H16 CI13 N3 O4 Mw=444.7 Monoclinic P/2₁c,a=17.337(4)A, b=15.191(5), c=7.601(3)A, β=91.72(2)', V=2000.9A3, Z=4, Dc=1.49g/cm3, Dm=1.45g/cm3(mo-ka)= 0.7107A, μ=4.31cm-1, F(000)=912.0, T=298'K, final R=0.061 for 1330 unique observed reflection. Each of the three ring system for the stars with B,A and C ring in order whilst A and C ring of econazole lie close to the same plane which is nearly 60˚with B ring. The hydrogen binding nitrogen of C ring and oxygen of nitrate contributes to stailization of econazole nitrate. Intr and intermolecular distances and angles are within the values recorded for simiar compounds.

  • PDF

Nitrate Removal by Pseudomonas fluorescens K4 Isolated from a Municipal Sewage Treatment Plant

  • Lee, O-Mi;Oh, Jong-Hyeok;Hwang, Doo-Seong;Choi, Yun-Dong;Chung, Un-Soo;Park, Jin-Ho;Kim, Min-Ju;Jeong, Seong-Yun;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1219-1223
    • /
    • 2007
  • The removal of nitrogen compounds from a wastewater is essential and it is often accomplished by bio-logical process. An aerobic nitrate-removing bacterium was isolated from a municipal sewage treatment plant and soil. On the basis of its morphological, cultural and physiological characteristics and 16S rRNA sequencing data, this strain was identified as Pseudomonas fluorescens, and named as P. fluorescens K4. The optimal conditions of the initial pH and temperature of media for its growth were $7.0{\sim}8.0$ and $30^{\circ}C$, respectively. P. fluorescens K4 was able to remove 99.9% of nitrate after 24 h in a culture. The strain could grow with a nitrate concentration up to 800 mg/l and was able to remove 99.9% of nitrate after 104 h of incubation. The optimal electron donor was sodium citrate for a nitrate removal. The strain K4 showed a capability of a complete nitrate removal when the initial C/N ratio was 1.0. An effect of the initial seed concentration was observed for a cell of 10% (v/v) for a nitrate removal. Especially P. fluorescens K4 could completely remove 200 mg/l ammonium for 3 days.

Nitrate Contents in Vegetables Cultivated by Organic Farming in Korea (우리나라 유기농 채소내 질산염 함량의 경시적 추이)

  • Sohn, Sang-Mok;Kim, Young-Ho;Yoon, Ji-Young
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.2
    • /
    • pp.125-151
    • /
    • 1999
  • After the release of facts that the high nitrate contents in vegetables by Korean organic farming, organic farmers were recommended by Korean Organic Farmer Association to apply 20t/ha compost while they applied before as much as they could, sometimes even more than 100t/ha. This study was aimed to check the safety of Korean organic product in terms of nitrate content. Current nitrate content in leaf and root vegetables by 3 different farming systems(organic farming, conventional farming, greenhouse farming) were monitored and furthermore it was compared with previously published another data in Korea to find out any changes among the monitored years(1993-1999). Current nitrate content in chinese cabbage, lettuce and kale became less compare to those of the beginning of monitoring, and especially those cultivated organic farming got the lowest value while previous organic vegetables at beginning of 90's showed the higher value than those cultivated in greenhouse. This decrease in organic vegetables was affected by less application rate of organic fertilizer than before at 20t/ha. But the nitrate level by organic farming was still higher compare to those cultivated by conventional farming in open field, since currently monitored organic vegetables were cultivated basically in greenhouse condition. It shows the organic farmer the necessity of transfer their farming site and condition from greenhouse to open field in order to decrease of its high level of nitrate caused long-term application and slow release characteristics of organic fertilizer. It was concluded the adoption of soil nitrate test to recommend a organic farmer the exact application rate for need of crop growth. Additionally the mechanism of lower nitrate accumulation in rice and fruit vegetables were also discussed in the paper.

  • PDF

Continuous Nitrate Reduction by Gel and Foam Matrix (GFM) Immobilized Cells (겔-스폰지 혼용 시스템에 고정화된 세포를 통한 질산염의 연속적 분해)

  • Cho, Yang-Hee;Hahm, Tae-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.902-907
    • /
    • 1998
  • In this study the anaerobic degradation of nitrate by in GFM (gel and foam matrix) and bead gel immobilized Paracoccus denitrificans DSM 65 in continous culture was conducted. A novel GFM immobilization system was developed in order to improve conventional system (bead). With increasing nitrate concentration in water, the nitrate reduction rate was increased. The observed maximum denitrification rate by in GFM immobilized cells was 177 mg/L h in buffered water, while that was 33 mg/L h in tap water. In comparison with bead system the reduction activity by GFM system showed $1.2{\sim}2.1$ times better. The denitrification activity was not changed after 16 days storage at $5^{\circ}C$ and also showed better activity than that of free cells or even bead immobilized cells.

  • PDF

Effects of added chlorides and their concentrations on growth and nitrate content in leaf lettuce(Lactuca sativa L.) in hydroponics.

  • Lee, Guang-Jae;Shin, Hyun-Man;Kim, Ki-Sik;Lee, Cheol-Hee;Kim, Jin-Han
    • Plant Resources
    • /
    • v.2 no.1
    • /
    • pp.26-30
    • /
    • 1999
  • Nitrate in edible vegetables is converted to nitrite by nitrate reductase(NR) and/or bacteria in intestines. Nitrite and amino, in the intestine of some animals and human, bind to form nitrosamine, which is toxic and known as carcinogen. This study was carried out to examine the effect of added chlorides and their concentrations on growth, yield and nitrate content in leaf lettuce plants in hydroponics. Seeds of lettuce cv, "Samsunjokchukmyon" were planted on April 29, and seedlings were planted on June 2, and were cultured until July 5 in 1998. KCI and CaCl₂ were used as chloride source and their concentrations were 1, 2 and 4 me/L, respectively, in the lettuce standard nutrient solution for National Horticultural Research Institute(NHRI). Completely randomized design with 3 replications was used. Nitrate content and NR activity were measured 2 and 5 weeks after planting(WAP). The obtained results were summarized as the follows : Leaf weight per plant was difference from harvest dates and treatments, but total leaf weight was not significantly different among treatments. Number of leaves was higher in KCI 2 me/L, CaCl₂1 me/L and control at 2 WAP than the others, and was higher in KCI 1 me/L, and control at 3 WAP than others, and was higher in control at 5 WAP. Total number of harvested leaves was the highest in control with 14, which followed by KCI 2 me/L and CaCl₂1 me/L. Nitrate content was decreased by addition of chloride in nutrient solution. Nitrate content in the 3rd and 9th leaves was significantly decreased. NR activity was higher in control and CaCl₂ addition treatments, while KCI addition treatments reduced NR activity. However, no direct relationship with nitrate was observed. Growth characteristics such leaf length and leaf width were not significantly influenced by chloride addition.

  • PDF

Evaluation of the Effect of Pump and Fertilize on Nitrate Reduction in Groundwater (지하수 관개 시비의 지하수 내 질산성질소 저감 효과 평가)

  • Yuhoon Yeum;Young Kim;Moon-su Kim;Sunhwa Park;Kyungjin Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.18-27
    • /
    • 2024
  • In this study, the pump and fertilize (PAF) was applied to reduce nitrogen infiltration into groundwater at three corn cultivation sites over a three-year period, and its effectiveness was evaluated. PAF involves pumping nitrate-contaminated groundwater and using it for irrigation, thereby replacing the need for chemical fertilizers. This method not only substitutes chemical fertilization, but also reduces nitrogen infiltration into groundwater through root zone consumption. To confirm PAF's effectiveness, an equal amount of nitrogen was applied in each cultivation plot, either through chemical fertilizer or irrigation with nitrate-contaminated groundwater. Regular monitoring of infiltrating pore water and groundwater was conducted in each cultivation plot. The linear regression slope for nitrate concentration in the pore water after repeated application of PAF ranged from -3.527 to -8.3485 mg-N/L/yr, confirming that PAF can reduce nitrate concentration in the pore water. With an increasing proportion of PAF, the infiltrating nitrate mass in pore water was reduced by 42% compared to plots fertilized with chemical fertilizer. Additionally, the linear regression slope of nitrate concentration in groundwater was calculated as -2.2999 and -9.2456 mg-N/L/yr. Therefore, continuous application of PAF in rural areas is expected to significantly contribute to reducing nitrate concentration in groundwater.

Denitrification of Anaerobic Sludge in Hybrid type Anaerobic Reactor(I): Acetate as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(I): 초산을 기질로 사용한 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.35-44
    • /
    • 1999
  • In this study, it was attempted to remove nitrate and carbon in a single-stage reactor using acetate as substrate. Hybrid type upflow sludge baffled filter reactor was adopted using anaerobic sludge. Sludge bed in the bottom of reactor was intended to remove carbon and nitrate by denitrification and methanogenesis. And floating media in the upper part of reactor were intended to remove remaining carbon which was not removed due to the inhibition of nitrogen oxide on methane producing bacteria. The reactor removed over 96% of COD and most of nitrate with volumetric loading rate of $4.0kgCOD/m^3{\cdot}day$, hydraulic retention time of 24hr, 4,000mgCOD/L, and $266mgNO_3-N/L$. Nitrate in anaerobic sludge was converted to nitrogen gas(denitrification) or ammonia (ammonification) according to pH of influent, COD removal efficiency was easily affected by the change of volumetric loading rates and nitrate concentration. And when influent pH was about 4.7, most nitrate changed to ammonia while when influent pH was about 6.8~7.0, most nitrate denitrified independent of $COD/NO_3-N$ ratio. Most granules were gray and a few were black. In gray-colored granule, black inner side was covered with gray substance and SEM illustrated Methanoccoci type microorganisms which were compact spherical shape. Anaerobic filter removed residual COD effectively which was left in sludge bed due to the inhibition of nitrogen oxide.

  • PDF