• Title/Summary/Keyword: night temperature

Search Result 579, Processing Time 0.04 seconds

The nocturnal characteristics of Seoul city: Focused on light color

  • Sung Dae Hong
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.353-359
    • /
    • 2024
  • The color temperature and light color of nighttime lighting in a particular city is an important factor in determining its nighttime identity. To quantitatively analyze the nocturnal characteristics of Seoul, this study focuses on the light color of the lighting sources that used in the places included in the Seoul Night View 100 Photobook. As a result, the color temperature of white light in the surveyed places is in the range of 2,500~3,500K, of which 3,000~3,500K represents the highest proportion. In addition, the color temperature in the 2,500~3,500K range was found to be evenly distributed across the five surveyed regions. Apart from white light, blue color hue accounts for a high percentage in the monochromic light category, and the excitation purity was measured to be 71.6% on average. In addition, 46% of the buildings with monochromic light are in urban centers.

Study on Comfortable Room Temperature using Mean Skin Temperature analysis in Sleeping (평균피부온도 분석을 통한 수면시 쾌적 실내 온도조건에 관한 연구)

  • KIm, Dong-Gyu;Chung, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.2
    • /
    • pp.161-167
    • /
    • 2007
  • It is necessary to control the room temperature for comfortable and deep sleep during a tropical night. We need to investigate thermal transport and parameter between human and environment for comfortable sleep. Therefore this study is performed to evaluate the comfortable room temperature based on the change of skin temperature under variations in thermal conditions and several reports. Five female subjects of 20~22 years with similar sleeping pattern were participated for the experiment. The subjects arrived in chamber at 9 pm and adapted to thermal circumstances during 2 hours. The sensors was sticked in body for skin temperatures. If subjects fall asleep in chamber, lights off and then sleep during 8 hours.As results, indoor temperature range for comfort sleep was $23.9{\sim}28.4^{\circ}C$ based on comfort mean skin temperature. But considering transition of time, minimum indoor temperature was $21.6^{\circ}C$, $22.9^{\circ}C$, $24.1^{\circ}C$, $23.9^{\circ}C$ and maximum indoor temperature was $28.2^{\circ}C$, $30.1^{\circ}C$.

Effects of Night Temperature at Veraison on Berry Skin Coloration of 'Kyoho' Grapevines (포도 '거봉' 품종의 변색기 야간 온도 처리가 과피 착색에 미치는 영향)

  • Ryu, Suhyun;Cho, Jung-Gun;Jeong, Jae Hoon;Lee, Seul-Ki;Han, Jeom Hwa
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.295-303
    • /
    • 2021
  • We analyzed berry skin coloration, anthocyanin accumulation, and plant hormone contents in berry skins to determine the effect of night temperature at veraison on berry skin coloration in 'Kyoho' grapevines (Vitis labruscana L.). Vines were grown under 21, 24, and 27℃ at night for 20 days at veraison, from 40 to 60 days after full bloom (DAFB). Berry skin coloration of 'Kyoho' grapes was more suppressed in 27℃ treated vines, followed by that in 24℃ treated vines, than that in 21℃ treated vines. Cluster and berry weight and soluble solids content was lower in 24 and 27℃ treated vines than in 21℃ treated vines. Anthocyanin started to accumulate from 60 DAFB in berry skin of 21℃ treated vines, and malvidin and total anthocyanin content increased until 100 DAFB. The total and most of the individual anthocyanins decreased in 24 and 27℃ treated vines; however, peonidin did not decrease in 24℃ treated vines compared to that in 21℃ treated vines. Abscisic acid (ABA) peaked at veraison in berry skins of 21℃ treated vines and decreased thereafter until 100 DAFB. The increase in ABA content was inhibited in berry skins of 24 and 27℃ treated vines. Gibberellin (GA) content in berry skins decreased rapidly at veraison, with the decrease being slower under 27℃ than under 21℃. ABA/GA in berry skins of 21℃ treated vines peaked at 60 DAFB and decreased thereafter until 100 DAFB. However, ABA/GA decreased in berry skins of 24 and 27℃ treated vines, with reduced anthocyanin accumulation. Therefore, high night temperature (above 24℃) at veraison suppressed the berry skin coloration of 'Kyoho' grapes with changes in anthocyanin contents and composition due to the decrease in ABA/GA ratio and fruit soluble solids contents.

Effect of Cold Stress on Carotenoids in Kale Leaves (Brassica oleracea) (저온처리가 케일(Brassica oleracea)잎 내 Carotenoid에 미치는 영향)

  • Hwang, So-Jung;Chun, Jin-Hyuk;Kim, Sun-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.106-112
    • /
    • 2017
  • BACKGROUND: Kale (Brassica oleracea) biosynthesizes various phytochemicals including glucosinolates, flavonoids, and carotenoids. Phytochemicals of plants are influenced by light, temperature, carbon dioxide, and growing conditions. Specifically, carotenoids are affected by temperature, light, and oxygen. The aim of this study was to investigate the effect of cold stress (day/night: $25^{\circ}C/20^{\circ}C$, $20^{\circ}C/15^{\circ}C$, $15^{\circ}C/10^{\circ}C$) on carotenoids in kale leaves. METHODS AND RESULTS: Kale was grown in pots for up to 50 days after sowing (DAS) in a greenhouse. For cold acclimation experiments, kale grown in growth chambers for 3 days and was subjected to low temperature for 4 days. The conditions maintained in the growth chambers were as follows: photoperiod, 12/12 h (day/night); light, fluorescent; and relative humidity, 60%. Carotenoid (lutein, ${\alpha}-carotene$, zeaxanthin, ${\beta}-carotene$) contents were analyzed by high-performance liquid chromatography (HPLC). The total carotenoid content gradually increased during cold acclimation for 3 days. When kale was subjected to cold stress, the total carotenoid content was high at $25^{\circ}C/20^{\circ}C$ treatment, but low at $15^{\circ}C/10^{\circ}C$ treatment. The total carotenoid content of kale leaves continuously grown in greenhouse decreased from 50 to 57 DAS (1,418 and 1,160 mgkg-1 dry wt., respectively). The lutein, ${\alpha}-carotene$, and ${\beta}-carotene$ contents were very low and the zeaxanthin contents were very high at $15^{\circ}C/10^{\circ}C$ treatment. When kale was subjected to cold stress, the ratio of individual to the total carotenoid contents of kale leaves was 4553% for -carotene and 210% for zeaxanthin. CONCLUSION: The ${\beta}-carotene$ and zeaxanthin contents in kale leaves indicate their sensitiveness toward cold stress.

A Study on Air Temperature-reducing Effects by Irrigation Reservoir (도시 내 소규모 관개저수지의 기온 저감효과에 관한 연구 - 수원시 일월저수지를 대상으로 -)

  • Zheng, Hai-Yan;Jin, Wen-Cheng;Lee, Kyoo-Seock;Oh, Sung-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.32-39
    • /
    • 2010
  • The air temperature-reducing effects by irrigation reservoir in urban area was investigated at Ilwol Pond (IWP). Air temperature and humidity data were observed at 10minute interval from September 1th, 2008 to August 31th, 2009. Air temperature of IWP and Sumsung Apartment (SAT) were analyzed to examine air temperature-reducing effects by IWP in terms of diurnal and seasonal variation. As a result, the average air temperature difference between IWP and SAT was $0.6^{\circ}C$ and the nighttime shows more air temperature-reducing effects. The dominant air temperature-reducing effects by IWP occurred at fall night and summer daytime. However, the air temperature-reducing effects by IWP is lower to that by Arboretum (ARB).

The Effect of Root Zone Cooling at Night on Substrate Temperature and Physiological Response of Paprika in Hot Climate (고온기 야간시간 근권냉방이 파프리카 배지온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Choi, Eun Young;Rhee, Han Cheol;Lee, Sung Eun;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • This study examined a technique for cooling root zone aimed at lowering substrate temperature for sweet pepper (Capsicum annum L. 'Orange glory') cultivation in coir substrate hydroponics during hot season, from the $16^{th}$ of July to $15^{th}$ of October in 2012. The root zone cooling technique was applied by using an air duct (${\varnothing}12$ cm, hole size 0.1 mm) to blow cool air between two slabs during night (5p.m. to 3a.m.). Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), average daily substrate temperature was $24.7^{\circ}C$ under the root zone cooling, whereas it was $28.2^{\circ}C$ under condition of no cooling (control). In sunny day (600~700 W $m^{-2}{\cdot}s^{-1}$), average substrate temperatures during the day (6a.m. to 8p.m.) and night (8p.m. to 6a.m.) were lower about $1.7^{\circ}C$ and $3.3^{\circ}C$, respectively, under the cooling treatment, compared to that of control. The degree of temperature reduction in the substrate was averagely $0.5^{\circ}C$ per hour under the cooling treatment during 6p.m. to 8p.m.; however, there was no decrease in the temperature under the control. The temperature difference between the cooling and control treatments was $1.3^{\circ}C$ and $0.6^{\circ}C$ in the upper and lower part of the slab, respectively. During the hot temperature period, about 32.5% reduction in the substrate temperature was observed under the cooling treatment, compared to the control. Photosynthesis, transpiration rate, and leaf water potential of plants grown under the cooling treatment were significantly higher than those under the control. The first flowering date in the cooling was faster about 4 days than in the control. Also, the number of fruits was significantly higher than that in the control. No differences in plant height, stem thickness, number of internode, and leaf width were found between the plants grown under the cooling and control, except for the leaf length with a shorter length under the cooling treatment. However, root zone cooling influenced negligibly on eliminating delay in fruiting caused by excessively higher air temperature (> $28^{\circ}C$), although the substrate temperature was reduced by $3^{\circ}C$ to $5.6^{\circ}C$. These results suggest that the technique of lowering substrate temperature by using air-duct blow needs to be incorporated into the lowering growing temperature system for growth and fruit set of health paprika.

Thermal Energy Characteristics and Simulation Model Development for Greenhouse Heating System Using Solar Energy (태양에너지를 이용한 그린하우스 난방시스템의 열특성과 시뮬레이션 모델개발)

  • Ro, J.G.;Song, H.K.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2001
  • The greenhouse heating system using solar energy has been realized in the protective agriculture in this study in order to analyse the thermal energy characteristics of the system the effects of ambient air temperature, solar radiation, relative humidities and water content of ambient air on the greenhouse air temperature were investigated through computer simulation experimental analysis for validation of the simulation. The results from this study are summarized as follows: 1) The expected values of inside air temperature for the system solar energy were very much close to the experimental values. 2) In the system using solar energy, the expected values of daytime surface temperature of soil by computer simulation were very much similar to the measured values, but those of nighttime were higher than the measured value by almost $2.5^{\circ}C$. 3) Heat loss of daytime was found to be larger than that of night time as much as 2.0 to 4.2 times for the system using solar energy. 4) In the system using solar energy. while the ambient air temperature varied between $-7^{\circ}C$ and $-3.8^{\circ}C$, the temperature of the inside air was maintained between $0^{\circ}C$ and $22^{\circ}C$. 5) At the minimum ambient temperature of $-7^{\circ}C$, the temperature of the inside air was $0^{\circ}C$.

  • PDF

Air Temperature Change by Vegetation Canopy in Urban Park (도시 공원 내 식생 수관에 의한 기온 변화)

  • Lee, Sang-Hwa;Lee, Kyoo-Seock;Zheng, Hai-Yan;Jin, Wen-Cheng
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.1
    • /
    • pp.44-51
    • /
    • 2009
  • In order to determine air temperature difference by canopy layer in the forest, air temperatures were observed at Seolleung Park, Gahngnam-ku, Seoul. from November 9, 2007 to November 8, 2008 by 10 minute interval. The data were analyzed in terms of diurnal variation based on annual and monthly temperature difference. Using calm, less cloudy and no rainy weather data, average air temperature difference between forest and grass was observed as $0.8^{\circ}C$. The maximum air temperature difference was observed at 22:10, 23:20, 23:30 and 23:40 by $2.13^{\circ}C$ and the minimum one observed at 13:00 by $-0.84^{\circ}C$ in diurnal variation. The maximum temperature difference occurred at 19 : 50 on September by $3.67^{\circ}C$, Overall the air temperature in the forest was higher than that of grass at night and lower in midday.

Variation Characteristics of Hourly Atmospheric Temperature Throughout a Winter (동계 시각별 외기온의 변동 특성에 관한 연구)

  • Lee, Seung-Eon;Shon, Jang-Yeul
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 1992
  • Identifying characteristics of heating and cooling systems requires estimation of thermal load of specific time interval, especially in cases that its system is operated intermittently, by using thermal storage, of in a partial load condition. Estimating the thermal load, however, needs to forecast hourly weather data variation. Hence, this paper attempts to examine characteristics of hourly ourdoor temperature variation as a preliminary research for the mathematical modeling of the hourly weather variation. Speculating characteristics of daily minimum and maximum temperature occurances, hourly outdoor temperature variation, and daily temperature differences in the increasing range ($07h{\sim}15h$) and decreasing range($15h{\sim}07h$), we were able to analyze changing patterns of daily temperature differences in each range in terms of daily solar amount, cloud ratio, and other weather data. Results from the multiple regression analysis enables us to conclude that daily differences in the increasing range are strongly affected last night temperature itself while the other range's differences are influenced by many weather data, which are solar amount, the variation of cloud, and the maximum temperature of the previous day.

  • PDF

Hydroacoustic Observations on the Diel Distribution and Activity Patterns of Fishes in the East China Sea II -Activity Patterns during the Evening and Morning Transition Periods - (동중국해에 있어서 어족생물의 일주기적 유영행동특성에 관한 연구-I-획야 전이시간대의 유영행동특성-)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.239-250
    • /
    • 1994
  • The vertical distribution and activity patterns of fishes during the evening and morning transitions between day and night were studied acoustically and by bottom trawling in November 1990-1992 in thermally stratified waters of the East China Sea. The acoustic data were collected from six stations with a scientific echo-sounder operating at two frequencies of 25 and 100kHz, and the echograms were used to determine the vertical distributions of fish. Biological sampling was accomplished by bottom trawling to identify fish species recorded on the echograms, and the species and length compositions were determined. At each station, vertical profiles of water temperature, salinity and dissolved oxygen were taken with a CTD system and were related to the diel movements and the depth distributions of fish. During the day most fish were within several meters above bottom, but began to migrate upwards just before sunset, and during the night they were dispersed in midwater. Prior to sunrise with a thermocline present, one group of the fish aggregation occurred in dense schools slightly above the thermocline, while the other group occurred with the numerous single fish-traces bellow it. These groups of aggregations rapidly began to migrate toward the bottom across the thermocline from about 40 min before sunrise. Trawl hauls in the bottom strata below the thermocline with the characteristic single fish traces yieled invariably catches dominated by snailfish and fishing frog with minor quantities of other species in all stations. Hence, the results indicate that snailfish and fishing frog were the dominated scatterers in the depth strata below the thermocline, and the single-fish recordings were mainly snailfish. The fish species such as anchovy and juvenile mackerel in bottom trawl catches is poorly represented in relation to the mesh selectivity of the trawl net, but their occurrence suggest that the fish-school recording above the thermocline were due to these species which migrated vertically across the thermocline, with a temperature gradient of about 8$^{\circ}C$, from the water layers near the bottom at night. Accordingly, we conclude that the vertical distribution and activity patterns of snailfish were strongly temperature dependent and in the termally stratified waters, the upper limit to diel activity was closely linked to the position of the thermocline.

  • PDF