• Title/Summary/Keyword: night flows

Search Result 14, Processing Time 0.017 seconds

A Critical Note on the Electric Field in Direct and Alternating Current and Its Consciousness

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.98-104
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-14}$ m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays'hindrances, nearthenucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Conventional Concept of Electric Field must be extended in the case of the direct and alternating current. Conventional concept is based on coulomb's force while the electric potential in the direct and alternating current is from Gibb's free energy. And also conventional concept has not any consciousness with human being but the latters has a conscious sensibility. The cell emf is from the kinetic energy of the open $\pi$-rays flow through the conducting wire. The electric potential in alternating current is from that the trans-orbital moving of the induced change of magnetic field in the wire produces flows of open $\pi$-rays, which push the rotating electrons on the orbital and then make the current flow. Human consciousness can induce a resonance with the sensibility of the open $\pi$-rays in the electric measuring equipment. Specially treated acupunctures with Nasucon is for sending an acupunctural effect from one place to another via space by someone's will power.

  • PDF

Design and performance estimation of fish-luring system using the water cooling typed LED lamp (채낚기 어선용 수랭식 LED 집어시스템의 설계 및 성능평가)

  • Bae, Bong-Seong;An, Heui-Chun;Kwon, Ki-Jin;Park, Seong-Wook;Park, Chang-Doo;Lee, Kyoung-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.2
    • /
    • pp.79-87
    • /
    • 2011
  • A fishing lamp is fishing gear to gather fish in the night. But the cost of oil which is used to a light fishing lamp, goes significantly up to almost one hundred million won for 50 tonnage vessels and forty million won in case of vessels less than 10 tonnages. This cost has almost taken 30.40% of total fishing costs. As oil price increases, the business condition of the fishery gets worse and worse. Therefore, it is very urgent to develop an economical fishing lamp, to solve the problem of fishery's business difficulty. This research aims at developing a fishing lamp for squid jigging fishery and hairtail angling fishery using the LED, which has excellent efficiency and durability. One fishing lamp has about 160Watt capacity and five fishing lamps are installed one aluminium panel in which sea water flows to emit generated heat from LED to outside. Developed fishing lamp lights to an effective direction of jigging and angling operation. This fishing lamp can be controlled to light the direction of fish shoal because the aluminium panel can be controlled to up and down direction. The wave length of fishing lamp has white and blue color. White color light is to gather fish shoal of horizontal direction and blue color light is to gather fish shoal of vertical direction. After development of this fishing lamp, 60.110 units are established on the boat, and operated fishing. Consequently, in the case of squid jigging, spent energy was reduced to 39%, in the case of hairtail angling, 68% of spent energy was reduced. And the catch was more than another boat.

Analysis of the Cold Air Flow in Suwon for the Application of Urban Wind Corridor (도시 바람길 활용을 위한 수원시 찬공기 유동 분석)

  • CHA, Jae-Gyu;CHOI, Tae-Young;KANG, Da-In;JUNG, Eung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.24-38
    • /
    • 2019
  • Due to the dramatic spatial changes caused by industrialization, environmental problems such as air pollution and urban heat island phenomenon, etc. are occurring in cities. In this case, the wind corridor, which is a passage through which fresh and cool air generated in forests outside cities move to the downtown, can be used as a spatial planning method for improving urban environmental problems. Cold air is determined by the characteristics of the flow depending on the topography and land use of cities, and based on this, the medium- and long-term plan should be established. Therefore, this study analyzed the flow of cold air at night through the KLAM_21 model in Suwon-si, Gyeonggi-do, to prepare the basic data required to apply the wind corridors. As a result, it turned out that cold air of Suwon-si was mainly generated from Gwanggyo Mountain that is a large mountain area in the north, and flowed into the urbanization promotion area, and about three hours after sunset, cold air flowed into the downtown. By district, the depth, wind speed, and direction of the cold air layer were formed differently according to the characteristics of the topography and land use. In the areas where large forests were adjacent, the flow of cold air was active. There are three main wind corridors where cold air flows to the downtown of Suwon-si, all of which are formed around rivers. Especially, if the connection between rivers and the surrounding green areas is high, the effect of wind corridors is found to be significant. In order to utilize the wind corridors of Suwon-si, based on the results of this study, it is necessary to make climate maps through actual survey and complex analysis of cold air flow and establish mid-to-long-term plans for the conservation and expansion of major wind corridors.

A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment (폐쇄집수역의 냉기호 모의를 통한 일 최저기온 분포 추정)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2011
  • Cold air on sloping surfaces flows down to the valley bottom in mountainous terrain at calm and clear nights. Based on the assumption that the cold air flow may be the same as the water flow, current models estimate temperature drop by regarding the cold air accumulation at a given location as the water-like free drainage. At a closed catchment whose outlet is blocked by man-made obstacles such as banks and roads, however, the water-like free drainage assumption is no longer valid because the cold air accumulates from the bottom first. We developed an empirical model to estimate quantitatively the effect of cold pool on nocturnal temperature in a closed catchment. In our model, a closed catchment is treated like a "vessel", and a digital elevation model (DEM) was used to calculate the maximum capacity of the cold pool formed in a closed catchment. We introduce a topographical variable named "shape factor", which is the ratio of the cold air accumulation potential across the whole catchment area to the maximum capacity of the cold pool to describe the relative size of temperature drop at a wider range of catchment shapes. The shape factor is then used to simulate the density profile of cold pool formed in a given catchment based on a hypsometric equation. The cold lake module was incorporated with the existing model (i.e., Chung et al., 2006), generating a new model and predicting distribution of minimum temperature over closed catchments. We applied this model to Akyang valley (i.e., a typical closed catchment of 53 $km^2$ area) in the southern skirt of Mt. Jiri National Park where 12 automated weather stations (AWS) are operational. The performance of the model was evaluated based on the feasibility of delineating the temperature pattern accurately at cold pool forming at night. Overall, the model's ability of simulating the spatial pattern of lower temperature were improved especially at the valley bottom, showing a similar pattern of the estimated temperature with that of thermal images obtained across the valley at dawn (0520 to 0600 local standard time) of 17 May 2011. Error in temperature estimation, calculated with the root mean square error using the 10 low-lying AWSs, was substantially decreased from $1.30^{\circ}C$ with the existing model to $0.71^{\circ}C$ with the new model. These results suggest the feasibility of the new method in predicting the site-specific freeze and frost warning at a closed catchment.