• Title/Summary/Keyword: news behavior

Search Result 94, Processing Time 0.019 seconds

Social Factors Affecting Internet Searches on Cyber Bullying in Korea and America Using Social Big Data and Google Search Trends (소셜 빅데이터와 Google 검색트렌드를 활용한 한국과 미국의 사이버불링 검색에 영향을 미치는 요인 분석)

  • Song, Tae-Min;Song, Juyoung;Cheon, Mi-Kyung
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 2016
  • The study analyzed big data extracted from Google and social media to identify factors related to searches on cyber bullying in Korea and America. Korea's cyber bullying analysis was conducted social big data collected from online news sites, blogs, $caf{\acute{e}}s$, social network services and message for between January 1, 2011 and March 31, 2013. Google search trends for the search words of stress, exercise, drinking, and cyber bullying were obtained for January 1, 2004 and December 22, 2013. The main results of this study were as follows: first, the significant factors stress were cyber bullying that Korea more than America. Secondly, a positive relationship was found between stress and drinking, exercise and cyber bullying both Korea and America. Thirdly, significant differences were found all path both Korea and America. The study shows that both adults and teenagers are influenced in Korea. We need to develop online application that if cyber bullying behavior was predicted can intervene in real time because these actual cyber bullying-related exposure to psychological and behavioral characteristic.

  • PDF

Prediction of Onion Purchase Using Structured and Unstructured Big Data (정형 및 비정형 빅데이터를 이용한 양파 소비 예측)

  • Rah, HyungChul;Oh, Eunhwa;Yoo, Do-il;Cho, Wan-Sup;Nasridinov, Aziz;Park, Sungho;Cho, Youngbeen;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.30-37
    • /
    • 2018
  • The social media data and the broadcasting data related to onion as well as agri-food consumer panel data were collected and investigated if the amount of money spent to purchase onion in year 2014 when onion price plunged latest were correlated with the frequencies of onion-related keywords in the social media data and the broadcasting programs because onion price in year 2018 is expected to plunge due to overproduction and there has been needs to analyze impacts of social media and broadcasting program on onion purchase in the previous similar events, and identify potential factors that can promote onion consumption in advance. What we identified from our study include a) broadcasting news programs mentioning words "onion," were correlated with onion purchase with 3 - 6 weeks in advance; b) broadcasting entertainment programs mentioning words "onion and health," were correlated with onion purchase with 11 weeks in advance; c) blog mentioning words "onion and efficacy," were correlated with onion purchase with 5 weeks in advance. Our study provided a case on how social media and broadcasting programs could be analyzed for their effects on consumer purchase behavior using big data collection and analysis in the field of agriculture. We propose to use the findings from the study may be applied to promote onion consumption.

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.