• 제목/요약/키워드: new pseudo-Hessian matrix

검색결과 2건 처리시간 0.02초

향상된 슈도-헤시안 행렬을 이용한 탄성파 완전 파형역산 (Frequency domain elastic full waveform inversion using the new pseudo-Hessian matrix: elastic Marmousi-2 synthetic test)

  • 최윤석;신창수;민동주
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.329-336
    • /
    • 2007
  • For scaling of the gradient of misfit function, we develop a new pseudo-Hessian matrix constructed by combining amplitude field and pseudo-Hessian matrix. Since pseudo- Hessian matrix neglects the calculation of the zero-lag auto-correlation of impulse responses in the approximate Hessian matrix, the pseudo-Hessian matrix has a limitation to scale the gradient of misfit function compared to the approximate Hessian matrix. To validate the new pseudo- Hessian matrix, we perform frequency-domain elastic full waveform inversion using this Hessian matrix. By synthetic experiments, we show that the new pseudo-Hessian matrix can give better convergence to the true model than the old one does. Furthermore, since the amplitude fields are intrinsically obtained in forward modeling procedure, we do not have to pay any extra cost to compute the new pseudo-Hessian. We think that the new pseudo-Hessian matrix can be used as an alternative of the approximate Hessian matrix of the Gauss-Newton method.

  • PDF

Depth Scaling Strategy Using a Flexible Damping Factor forFrequency-Domain Elastic Full Waveform Inversion

  • Oh, Ju-Won;Kim, Shin-Woong;Min, Dong-Joo;Moon, Seok-Joon;Hwang, Jong-Ha
    • 한국지구과학회지
    • /
    • 제37권5호
    • /
    • pp.277-285
    • /
    • 2016
  • We introduce a depth scaling strategy to improve the accuracy of frequency-domain elastic full waveform inversion (FWI) using the new pseudo-Hessian matrix for seismic data without low-frequency components. The depth scaling strategy is based on the fact that the damping factor in the Levenberg-Marquardt method controls the energy concentration in the gradient. In other words, a large damping factor makes the Levenberg-Marquardt method similar to the steepest-descent method, by which shallow structures are mainly recovered. With a small damping factor, the Levenberg-Marquardt method becomes similar to the Gauss-Newton methods by which we can resolve deep structures as well as shallow structures. In our depth scaling strategy, a large damping factor is used in the early stage and then decreases automatically with the trend of error as the iteration goes on. With the depth scaling strategy, we can gradually move the parameter-searching region from shallow to deep parts. This flexible damping factor plays a role in retarding the model parameter update for shallow parts and mainly inverting deeper parts in the later stage of inversion. By doing so, we can improve deep parts in inversion results. The depth scaling strategy is applied to synthetic data without lowfrequency components for a modified version of the SEG/EAGE overthrust model. Numerical examples show that the flexible damping factor yields better results than the constant damping factor when reliable low-frequency components are missing.