• Title/Summary/Keyword: new prediction procedure

Search Result 110, Processing Time 0.026 seconds

Effect of watershed characteristics on the criteria of Flash Flood warning (유역인자의 특성이 경계경보발령 기준에 미치는 영향분석)

  • 양인태;김재철;김태환
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.389-392
    • /
    • 2004
  • A recent unusual change in the weather is formed as a localized heavy rain in a short time. This phenomenon has caused a flash flood, and flash floods extensively have damaged human lives many times. In large river's case, the extent of loss of lives and properties has been decreased through the flood warning system by flood control stations of each stream. However, the extent of damage in other small rivers has increased reversely. Therefore, it is necessary to establish a new flood warning system against flash floods instead of the existing flood warning system. It is a specific character that the damage from flash floods in mountain streams brings much more loss of lives than large river's flood. The purpose of this study is calculating the characteristic of flash floods in streams, analyzing topographical characteristics of water basin through applying GIS techniques with the calculation as mentioned above and researching what topographical conditions have influence on hydrological flash floods in water basin. The flash flood prediction model we used is made by GIUH (geomorphoclimatic instantaneous unit hydrograph) with hydrologic-topographical technology. As applying the flash flood prediction model, this is a procedure for calculating topographical information in basin: we made a topological data up out of database with utilizing GIS, and we also produced a DEM (digital elevation model) and used it as a topographical data for determining amount of flash floods.

  • PDF

Strain energy-based fatigue life prediction under variable amplitude loadings

  • Zhu, Shun-Peng;Yue, Peng;Correia, Jose;Blason, Sergio;De Jesus, Abilio;Wang, Qingyuan
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.151-160
    • /
    • 2018
  • With the aim to evaluate the fatigue damage accumulation and predict the residual life of engineering components under variable amplitude loadings, this paper proposed a new strain energy-based damage accumulation model by considering both effects of mean stress and load interaction on fatigue life in a low cycle fatigue (LCF) regime. Moreover, an integrated procedure is elaborated for facilitating its application based on S-N curve and loading conditions. Eight experimental datasets of aluminum alloys and steels are utilized for model validation and comparison. Through comparing experimental results with model predictions by the proposed, Miner's rule, damaged stress model (DSM) and damaged energy model (DEM), results show that the proposed one provides more accurate predictions than others, which can be extended for further application under multi-level stress loadings.

Election Forecasting and Exit-poll : The 16th Presidential Election in Korea (선거예측과 출구조사 : 16대 대선을 중심으로)

  • 김정훈
    • Survey Research
    • /
    • v.4 no.2
    • /
    • pp.87-102
    • /
    • 2003
  • Till now, much progress has been made in election forecasting. But fixed-line telephone survey has limitations, because it has become more and more difficult to get a representative sample, Exit poll has been considered to provide a new solution. From the beginning, exit poll provided more accurate predictions than those based on surveys using fixed-line phone. In 2002 presidential election, prediction based on exit poll was perfect. Its predictive error was zero. This paper describes how the exit poll was done in 2002 presidential elections. Specifically, we are to show the estimating procedures as well as sampling and polling process. Among many factors, sampling procedure has been fond to be the most important factor in exit poll accuracy.

  • PDF

Reliability Prediction of Liquid Rocket Engines for Different Propellant and Engine Cycles (추진제 및 연소 사이클을 고려한 액체로켓 엔진의 신뢰도 예측)

  • Kim, Kyungmee O.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.181-188
    • /
    • 2016
  • It is known that reliability of liquid rocket engines depends on the design thrust, propellant, engine cycle, and hot firing test time. Previously, a method was developed for estimating reliability of a new engine by adjusting the design thrust and hot firing test time of reference engines where reference engines have the same propellant and engine cycle with the new engine. In this paper, we provide a procedure to predict the engine reliability when the new engine and the reference engine have different propellant and engine cycles. The proposed method is illustrated to estimate the engine reliability of the first stage of Korea Space Launch Vehicle II.

Simultaneous optimization method of feature transformation and weighting for artificial neural networks using genetic algorithm : Application to Korean stock market

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.323-335
    • /
    • 1999
  • In this paper, we propose a new hybrid model of artificial neural networks(ANNs) and genetic algorithm (GA) to optimal feature transformation and feature weighting. Previous research proposed several variants of hybrid ANNs and GA models including feature weighting, feature subset selection and network structure optimization. Among the vast majority of these studies, however, ANNs did not learn the patterns of data well, because they employed GA for simple use. In this study, we incorporate GA in a simultaneous manner to improve the learning and generalization ability of ANNs. In this study, GA plays role to optimize feature weighting and feature transformation simultaneously. Globally optimized feature weighting overcome the well-known limitations of gradient descent algorithm and globally optimized feature transformation also reduce the dimensionality of the feature space and eliminate irrelevant factors in modeling ANNs. By this procedure, we can improve the performance and enhance the generalisability of ANNs.

  • PDF

Prediction of seismic displacements in gravity retaining walls based on limit analysis approach

  • Mojallal, Mohammad;Ghanbari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.247-267
    • /
    • 2012
  • Calculating the displacements of retaining walls under seismic loads is a crucial part in optimum design of these structures and unfortunately the techniques based on active seismic pressure are not sufficient alone for an appropriate design of the wall. Using limit analysis concepts, the seismic displacements of retaining walls are studied in present research. In this regard, applying limit analysis method and upper bound theorem, a new procedure is proposed for calculating the yield acceleration, critical angle of failure wedge, and permanent displacements of retaining walls in seismic conditions for two failure mechanisms, namely sliding and sliding-rotational modes. Also, the effect of internal friction angle of soil, the friction angle between wall and soil, maximum acceleration of the earthquake and height of the wall all in the magnitude of seismic displacements has been investigated by the suggested method. Two sets of ground acceleration records related to near-field and far-field domains are employed in analyses and eventually the results obtained from the suggested method are compared with those from other techniques.

QSPR Study of the Absorption Maxima of Azobenzene Dyes

  • Xu, Jie;Wang, Lei;Liu, Li;Bai, Zikui;Wang, Luoxin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3865-3872
    • /
    • 2011
  • A quantitative structure-property relationship (QSPR) study was performed for the prediction of the absorption maxima of azobenzene dyes. The entire set of 191 azobenzenes was divided into a training set of 150 azobenzenes and a test set of 41 azobenzenes according to Kennard and Stones algorithm. A seven-descriptor model, with squared correlation coefficient ($R^2$) of 0.8755 and standard error of estimation (s) of 14.476, was developed by applying stepwise multiple linear regression (MLR) analysis on the training set. The reliability of the proposed model was further illustrated using various evaluation techniques: leave-many-out crossvalidation procedure, randomization tests, and validation through the test set.

3D-QSAR Analysis and Molecular Docking of Thiosemicarbazone Analogues as a Potent Tyrosinase Inhibitor

  • Park, Joon-Ho;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1241-1248
    • /
    • 2011
  • Three dimensional quantitative structure-activity relationships (3D-QSARs) between new thiosemicarbazone analogues (1-31) as a substrate molecule and their inhibitory activity against tyrosinase as a receptor were performed and discussed quantitatively using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) methods. According to the optimized CoMSIA 2 model obtained from the above procedure, inhibitory activities were mainly dependent upon H-bond acceptor favored field (36.5%) of substrate molecules. The optimized CoMSIA 2 model, with the sensitivity of the perturbation and the prediction, produced by a progressive scrambling analysis was not dependent on chance correlation. From molecular docking studies, it is supposed that the inhibitory activation of the substrate molecules against tyrosinase (PDB code: 1WX2) would not take place via uncompetitive inhibition forming a chelate between copper atoms in the active site of tyrosinase and thiosemicarbazone moieties of the substrate molecules, but via competitive inhibition based on H-bonding.

Flow Analysis on a 1kW-class Horizontal Axis Wind Turbine Blade for Hybrid Power Generation System (복합발전 적용을 위한 1kW급 수평축 풍력터빈 유동해석)

  • Lee, Jun-Yong;Choi, Nak-Joon;Choi, Young-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • This study is to develop a 1kW-class small wind turbine blade which will be applicable to relatively low speed regions. For this blade, a high efficiency wind turbine blade is designed and a light and low cost composite structure blade is adopted considering fatigue life. In this study, shape design of 1kW-class small wind turbine blade for hybrid power generation system is carried out by BEMT(blade element momentum theory). X-FOIL open software was used to acquire lift and drag coefficients of the 2D airfoils used in power prediction procedure. Moreover, pressure and velocity distributions are investigated according to TSR by CFD analysis.

  • PDF

A Study on Characteristic Analysis of C-Plate Cover and Examination of Weak Parts (C-Plate 커버의 구조해석 및 취약부 규명)

  • 김옥구;송준엽;강재훈;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.373-377
    • /
    • 2003
  • Recently, advanced manufacturing systems with high speed and intelligence have been developed for the betterment of machining ability. In this case, reliability prediction work with motion characteristic evaluation of sliding cover(C-plate, Bellows, etc) has also important role from design procedure to manufacturing and assembly process. Accordingly in this study, H/W test-bed system for reliability evaluation of sliding cover has been developed to obtain proper reference data for design of new model, prevention trouble (failure mode), and improvement of quality and lift cycle extremely for advanced mother machinery.

  • PDF