• 제목/요약/키워드: new hybrid fiber system

검색결과 16건 처리시간 0.024초

The relationship between reinforcing index and flexural parameters of new hybrid fiber reinforced slab

  • Cao, Mingli;Xie, Chaopeng;Li, Li;Khan, Mehran
    • Computers and Concrete
    • /
    • 제22권5호
    • /
    • pp.481-492
    • /
    • 2018
  • In this paper, a new hybrid fiber system (NHFS) is investigated for the application of slab. The steel fiber, polyvinyl alcohol (PVA) fiber and calcium carbonate ($CaCO_3$) whisker is added to form NHFS. The four-point bending test is carried out on the flexural properties of slab with plain, steel fiber, traditional hybrid fiber system (THFS) and NHFS reinforced cementitious composites. The flexural behavior is evaluated by ASTM C1018-97, JCI-SF4 and post-crack strength (PCS) technique. The evaluation parameters of flexural toughness such as toughness index (TI), equivalent flexural strength (EFS) and PCS are determined. The size of slab specimens is $15mm(thickness){\times}50mm(width){\times}200mm(length)$. The results show that adding $CaCO_3$ whisker to THFS can significantly improve the flexural strength, TI, EFS, PCS of the slab. The empirical relation between reinforcing index ($RI_v$) and flexural parameters show that flexural parameters of slabs increase first and then decrease; which indicates that optimum $RI_v$ values can be helpful in the considering the mix design of steel-PVA fibers-$CaCO_3$ whisker composites for achieving the desired flexural-related properties. The scanning electron microscopy is performed to observe the micro-morphological characteristics of the fracture surface, which proved the positive hybrid effect among the different fibers in cementitious composites. The NHFS can arrest the generation and propagation of the crack from micro to macro level.

Wideband Gain Flattened Hybrid Erbium-doped Fiber Amplifier/Fiber Raman Amplifier

  • Afkhami, Hossein;Mowla, Alireza;Granpayeh, Nosrat;Hormozi, Azadeh Rastegari
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.342-350
    • /
    • 2010
  • An optimal wideband gain flattened hybrid erbium-doped fiber amplifier/fiber Raman amplifier (EDFA/FRA) has been introduced. A new and effective optimization method called particle swarm optimization (PSO) is employed to find the optimized parameters of the EDFA/FRA. Numerous parameters which are the parameters of the erbium-doped fiber amplifier (EDFA) and the fiber Raman amplifier (FRA) define the gain spectrum of a hybrid EDFA/FRA. Here, we optimize the length, $Er^{3+}$ concentration, and pump power and wavelength of the EDFA and also pump powers and wavelengths of the FRA to obtain the flattest operating gain spectrum. Hybrid EDFA/FRA with 6-pumped- and 10-pumped-FRAs have been studied. Gain spectrum variations are 1.392 and 1.043 dB for the 6-pumped- and 10-pumped-FRAs, respectively, in the 108.5 km hybrid EDFA/FRAs, with 1 mW of input signal powers. Dense wavelength division multiplexing (DWDM) system with 60 signal channels in the wavelength range of 1529.2-1627.1 nm, i.e. the wide bandwidth of 98 nm, is studied. In this work, we have added FRA's pump wavelengths to the optimization parameters to obtain better results in comparison with the results presented in our previous works.

IoT 기반 하이브리드 계측시스템 실시간 다점 측정 성능 평가 (Evaluation on real-time multi-point sensing performance of IoT-based hybrid measurement system)

  • 김헌영;강동훈
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.543-550
    • /
    • 2018
  • 4차 산업혁명의 도래와 함께 빠른 속도로 발전하고 있는 IoT 기술은 다양한 센서의 무선화를 가능하게 하였으며 많은 분야에서 응용연구가 활발히 진행되고 있다. 하지만, 철도현장의 경우 수 km에 이르는 교량, 터널 등 계측사이트의 규모가 매우 방대한 특징으로 인해, 보편적으로 활용되는 전기식 센서의 경우 원거리 계측으로 인한 신호 잡음 문제, 전철화에 따른 고전압 환경에 기인한 전자기파 간섭 문제로 계측에 어려움이 있다. 이를 극복하고자, 전기식 센서를 대체하기 위한 광섬유 센서 연구가 많이 수행되었으나, 센서 종류의 다양성 부족 등이 현장 적용의 한계로 작용하고 있는 실정이다. 이런 현장의 상황을 토대로, 전기식 센서와 광섬유 센서를 동시에 사용할 수 있으며 IoT 기술을 통해 무선 데이터 통신이 가능한 하이브리드 계측시스템이 개발되었다. 본 연구에서는, 선행연구를 통해 개발된 하이브리드 계측시스템의 다양한 계측현장 적용성을 평가하기 위해 4가지 형태의 계측환경을 모사하여 실시간 계측 실험을 수행하였다. 실험결과, 전기식 및 광학식 센서 모두 높은 추종성을 보이며 원격지에서 실시간으로 계측이 가능하였으며, 본 계측시스템이 50개의 센서를 동시에 2.5kHz의 샘플링으로 계측할 경우에도 적용 가능한 수준임을 확인하였다. 향후, IoT 기반 하이브리드 계측시스템의 다양한 현장 적용을 통해 실시간 건전성 모니터링 기술 기반의 구조안전성 향상에 기여할 것으로 기대한다.

Hybrid Fiber Coaxial망에서 VoIP 서비스 구현 (Implementation of VoIP Service in Hybrid Fiber Coaxial Network)

  • 주재한
    • 한국항행학회논문지
    • /
    • 제21권1호
    • /
    • pp.113-118
    • /
    • 2017
  • 최근 모바일기기 및 네트워크에 대한 관심이 높아짐에 따라 기존의 IP (internet protocol) 망을 이용하여 음성데이터를 전송하는 기술인 VoIP (voice over internet protocol)서비스가 급속히 확산됨에 따라 무선 인터넷망을 활용하여 언제 어디서나 저렴한 음성 통화 서비스가 가능해졌다. 그리고 디지털방송서비스가 보급되면서 방송과 통신의 융합을 통해 광대역케이블망을 이용하는 HFC (hybrid fiber coaxial)망 기술은 기존의 통신시스템 및 망설비를 활용하여 양방향 방송서비스 및 인터넷, 전화 등 다양한 신규 서비스를 제공하고 있다. 따라서 실제 HFC 인터넷서비스망에서 음성데이터의 품질보장을 위해 VoCM에 UGS-AD를 MTA에는 RTPS를 적용하면 실제 상용 HFC 인터넷서비스망에서 문제가 되는 협소한 상향대역에서의 음성데이터 전송을 원활히 수행할 수 있음을 확인하였으며, HFC 인터넷서비스 망에서 음성데이터의 QoS개선을 통해 기존 대비 개선된 VoIP서비스를 구현하는 방안을 제시하였다.

폴리비닐알코올 $H_6P_2W_{18}O_{62}$ hybrid membranes의 광색 및 열적 특성 (Photochromic and thermal properties of poly (Vinyl alcohol)/ $H_6P_2W_{18}O_{62}$ hybrid membranes)

  • Jian Gong;Kim, Hak-Yong;Lee, Duck-Rae;Bin Ding;Xiangdan Li
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.459-461
    • /
    • 2002
  • A new class of materials based on organic and inorganic species combined at a molecule level has obtained more attention recently[1]. HPA(heteropolyacid) shows unmatched applied perspective in terms of synthesis chemistry, analysis chemistry, biology, medicine and materials science[2]. As a potential photochemical material, the hybrid system of HPA and polymer has been investigated. However, the design and synthesis of heteropolyacid-based hybrids, which are at the forefront of the materials chemistry research, is still in its infancy. (omitted)

  • PDF

Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete

  • Tahmouresi, Behzad;Koushkbaghi, Mahdi;Monazami, Maryam;Abbasi, Mahdi Taleb;Nemati, Parisa
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.193-206
    • /
    • 2019
  • Although concrete is the most widely used construction material, its deficiency in shrinkage and low tensile resistance is undeniable. However, the aforementioned defects can be partially modified by addition of fibers. On the other hand, possibility of adding waste materials in concrete has provided a new ground for use of recycled concrete aggregates in the construction industry. In this study, a constant combination of recyclable coarse and fine concrete aggregates was used to replace the corresponding aggregates at 50% substitution percentage. Moreover, in order to investigate the effects of fibers on mechanical and durability properties of recycled aggregate concrete, the amounts of 0.5%, 1%, and 1.5% steel fibers (ST) and 0.05%, 0.1% and 0.15% polypropylene (PP) fibers by volumes were used individually and in hybrid forms. Compressive strength, tensile strength, flexural strength, ultrasonic pulse velocity (UPV), water absorption, toughness, elastic modulus and shrinkage of samples were investigated. The results of mechanical properties showed that PP fibers reduced the compressive strength while positive impact of steel fibers was evident both in single and hybrid forms. Tensile and flexural strength of samples were improved and the energy absorption of samples containing fibers increased substantially before and after crack presence. Growth in toughness especially in hybrid fiber-reinforced specimens retarded the propagation of cracks. Modulus of elasticity was decreased by the addition of PP fibers while the contrary trend was observed with the addition of steel fibers. PP fibers decreased the ultrasonic pulse velocity slightly and had undesirable effect on water absorption. However, steel fiber caused negligible decline in UPV and a small impact on water absorption. Steel fibers reduce the drying shrinkage by up to 35% when was applied solely. Using fibers also resulted in increasing the ductility of samples in failure. In addition, mechanical properties changes were also evaluated by statistical analysis of MATLAB software and smoothing spline interpolation on compressive, flexural, and indirect tensile strength. Using shell interpolation, the optimization process in areas without laboratory results led to determining optimal theoretical points in a two-parameter system including steel fibers and polypropylene.

FRP-UHPC 복합 보강기법으로 보강된 RC 슬라브의 휨 파괴를 위한 설계 조건 (Flexural Failure Design Criteria for Retrofitted RC Slabs using FRP-UHPC Hybrid System)

  • 김정중;노혁천;마흐무드 레다 타하
    • 복합신소재구조학회 논문집
    • /
    • 제3권2호
    • /
    • pp.11-18
    • /
    • 2012
  • This study proposes flexural failure design criteria of continuous slabs enhanced by a hybrid system of fiber reinforced polymer (FRP) and ultra high performance concrete (UHPC). The proposed hybrid retrofit system is designed to be placed at the top surface of the slabs for flexural strengthening of the sections in both positive and negative moment zones. The enhancing mechanisms of the proposed system for both positive and negative moment regions are presented. The neutral axis of the enhanced sections in positive moment zone at flexural failure is enforced to be in UHPC overlay for preventing the compression in FRP. From this condition, a relationship between design parameters of FRP and UHPC is established. Although the capacity of the proposed retrofit system to enhance flexural strength and ductility is confirmed through experiments of one-way RC slabs having two continuous spans, the retrofitted slabs failed in shear. To prevent this shear failure, a design criteria of flexural failure is proposed.

전기방사를 이용한 리그닌 나노섬유의 제조 (Fabrication of Lignin Nanofibers Using Electrospinning)

  • 이은실;이승신
    • 한국의류학회지
    • /
    • 제38권3호
    • /
    • pp.372-385
    • /
    • 2014
  • Lignin is an abundant natural polymer in the biosphere and second only to cellulose; however, it is under-utilized and considered a waste. In this study, lignin was fabricated into nanofibers via electrospinning. The critical parameters that affected the electrospinnability and morphology of the resulting fibers were examined with the aim to utilize lignin as a resource for a new textile material. Poly(vinyl alcohol) (PVA) was added as a carrier polymer to facilitate the fiber formation of lignin, and the electrospun fibers were deposited on polyester (PET) nonwoven substrate. Eleven lignin/PVA hybrid solutions with a different lignin to PVA mass ratio were prepared and then electrospun to find an optimum concentration. Lignin nano-fibers were electrospun under a variety of conditions such as various feed rates, needle gauges, electric voltage, and tip-to-collector distances in order to find an optimum spinning condition. We found that the optimum concentration for electrospinning was a 5wt% PVA precursor solution upon the addition of lignin with the mass ratio of PVA:lignin=1:5.6. The viscosity of the lignin/PVA hybrid solution was determined as an important parameter that affected the electrospinning process; in addition, the interrelation between the viscosity of hybrid solution and the electrospinnability was examined. The solution viscosity increased with lignin loading, but exhibited a shear thinning behavior beyond a certain concentration that resulted in needle clogging. A steep increase in viscosity was also noted when the electrospun system started to form fibers. Consequently, the viscosity range to produce bead-free lignin nanofibers was revealed. The energy dispersive X-ray analysis confirmed that lignin remained after being transformed into nanofibers. The results indicate the possibility of developing a new fiber material that utilizes biomass with resulting fibers that can be applied to various applications such as filtration to wound dressing.

A Hybrid Upstream Bandwidth Allocation Method for Multimedia Communications in EPONs

  • Baek, Jinsuk;Kwak, Min Gyung;Fisher, Paul S.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권1호
    • /
    • pp.27-33
    • /
    • 2012
  • The Ethernet Passive Optical Network (EPON) has been considered to be one of the most promising solutions for the implementation of the Fiber To The Home (FTTH) technology designed to ameliorate the "last mile" bandwidth bottleneck. In the EPON network, an efficient and fair bandwidth allocation is a very important issue, since multiple optical network units (ONUs) share a common upstream channel for packet transmission. To increase bandwidth utilization, an EPON system must provide a way to adaptively allocate the upstream bandwidth among multiple ONUs in accordance to their bandwidth demands and requirements. We present a new hybrid method that satisfies these requirements. The advantage of our method comes from the consideration of application-specific bandwidth allocation and the minimization of the idle bandwidth. Our simulation results show that our proposed method outperforms existing dynamic bandwidth allocation methods in terms of bandwidth utilization.

  • PDF

Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis

  • Teoh, May May;Wang, Kai Yu;Bonyadi, Sina;Yang, Qian;Chung, Tai-Shung
    • Membrane and Water Treatment
    • /
    • 제2권1호
    • /
    • pp.1-24
    • /
    • 2011
  • The deficiency of clean water is a major global concern because all the living creatures rely on the drinkable water for survival. On top of this, abundant of clean water supply is also necessary for household, metropolitan inhabitants, industry, and agriculture. Among many purification processes, advances in low-energy membrane separation technology appear to be the most effective solution for water crisis because membranes have been widely recognized as one of the most direct and feasible approaches for clean water production. The aim of this article is to give an overview of (1) two new emerging membrane technologies for water reuse and desalination by forward osmosis (FO) and membrane distillation (MD), and (2) the molecular engineering and development of highly permeable hollow fiber membranes, with polyvinylidene fluoride (PVDF) and polybenzimidazole (PBI) as the main focuses for the aforementioned applications in National University of Singapore (NUS). This article presents the main results of membrane module design, separation performance, membrane characteristics, chemical modification and spinning conditions to produce novel hollow fiber membranes for FO and MD applications. As two potential solutions, MD and FO may be synergistically combined to form a hybrid system as a sustainable alternative technology for fresh water production.