• Title/Summary/Keyword: new construction material

Search Result 670, Processing Time 0.029 seconds

β-Glucan- and Xanthan gum-based Biopolymer Stimulated the Growth of Dominant Plant Species in the Korean Riverbanks (베타글루칸과 잔탄검 계열 바이오폴리머 신소재의 국내 하천 식물종에 대한 생육 촉진 영향)

  • Jeong, Hyungsoon;Jang, Ha-Young;Ahn, Sung-Ju;Kim, Eunsuk
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.3
    • /
    • pp.163-170
    • /
    • 2019
  • The civil engineering materials used to stabilize the slopes of new riverbanks have a great impact on the types and growth of vegetation introduced after the completion of construction procedure. Recently, microbial-derived, ${\beta}$-glucan- and xanthan gum-based biopolymers are attracting attention as an ecofriendly strengthening material of riverbanks that can possibly stimulate plant growth. This study aimed to assess ecological effects of biopolymer application on native plants in Korean riverbanks. In particular, since dominant plant species could shape characteristics of an ecosystem, we examined the effects of biopolymer on the dominant plant species in riverbanks. Overall, biopolymer did not affect seed germination rates of testing plant species. In contrast, plants grew more vigorously in the soil mixed with biopolymer compared to those in the control soil. The biomass of Echinochloa crus-galli especially increased around two times more in the biopolymer treatment. Plants produced heavier root biomass and leaves with larger specific leaf area, which possibly contributes to the tolerance of environmental stress like drought. These results suggest that biopolymers treated on river banks are expected to stimulate plant growth and increase stress tolerance of domestic dominant plant species.

An Empirical Study of Soundproof wall with Reduced Wind Load (풍하중 저감형 방음판의 실증 연구)

  • Choi, Jin-Gyu;Lee, Chan-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.272-278
    • /
    • 2018
  • Traffic volume has been greatly increasing due to urban development and the improvement of living standards, and many complaints are being raised due to the increasing road noise. As a countermeasure against these problems, highly soundproof walls are installed on the sides of roads. However, the ability to bear wind loads is a major design requirement for soundproof walls, which contributes to the exponential increases in construction costs and restricts the height of the walls. The aim of this study is to improve the performance of soundproof walls and to dramatically reduce wind loads while maintaining excellent price competitiveness. Based on Helmholz's resonator theory, a new concept is proposed for a ventilation-type soundproofing plate that can pass through a fluid like air and reduce noise. A full-scale metal soundproofing plate was produced to satisfy the quality standards of highways by conducting a sound-pressure transmission-loss test, wind tunnel test, and material quality test. To verify the reliability, the wall was manufactured and installed, and the sound insulation effect was examined by measuring the noise over time. In the future, ventilated soundproof walls on roads could create a pleasant living environment due to the high noise-insulation effect.

Surface characteristics for thermal diffusion of FA-BFS-based geopolymer ceramics added alumina aggregate (알루미나 골재를 첨가한 FA-BFS계 지오폴리머 세라믹스의 열확산에 대한 표면 특성)

  • Kim, Jin-Ho;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • Geopolymer is an eco-friendly construction material that has various advantages such as reduced $CO_2$ emission, fire resistance and low thermal conductivity compared to cement. However, it has not been many studies on the thermal behavior of the surface of the geopolymer panel when flame is applied to the surface. In this study, surface characteristics of hardened geopolymer on flame exposure was investigated to observe its characteristics as heat-resistant architectural materials. External structure changes and crack due to the heat shock were not observed during the exposure on flame. According to the residue of calcite and halo pattern of aluminosilicate gel, decarboxylation and dehydration were extremely limited to the surface and, therefore, it is thought that durability of hardened geopolymer was sustained. Gehlenite and calcium silicate portion was inversely proportional to quartz and calcite and significantly directly proportional to BFS replacement ratio. Microstructure changes due to the thermal shock caused decarboxylation and dehydration of crystallization and it was developed the pore and new crystalline phase like calcium silicate and gehlenite. It is thought that those crystalline phase worked as a densification and strengthening mechanism on geopolymer panel surface.

Study on the Applicability of Muography Exploration Technology in Underground Space Development (지하공간개발에서 뮤오그래피 탐사기술의 적용성에 관한 연구)

  • Seo, Seunghwan;Lim, Hyunsung;Ko, Younghun;Kwak, Kiseok;Chung, Moonkyung
    • Explosives and Blasting
    • /
    • v.39 no.4
    • /
    • pp.22-33
    • /
    • 2021
  • Recently, the frequent occurrence of ground subsidence in urban areas has caused increasing anxiety in residents and incurred significant social costs. Among the causes of ground subsidence, the rupture of old water and sewer pipes not only halts the operation of the buried pipes, but also leads to ground and water pollution problems. However, because most pipes are buried after construction and cannot be seen with the naked eye, the importance of maintenance has underestimated compared to other structures. In recent years, integrated physical exploration has been applied to the maintenance of underground pipes and structures. Currently, to investigate the internal conditions and vulnerable portions of the ground, consolidated physical surveys are executed. Consolidated physical surveys are analysis techniques that obtain various material data and add existing data using multiple physical surveys. Generally, in geotechnical engineering, consolidated physical surveys including electrical and surface wave surveys are adopted. However, it is difficult to investigate time-based changes in under ground using these surveys. In contrast, surveys using cosmic-ray muons have been used to scan the inner parts of nuclear reactors with penetration technology. Surveys using muons enable real-time observation without the influence of vibration or electricity. Such surveys have great potential for available technology because of their ability to investigate density distributions without requiring as much labor. In this paper, survey technologies using cosmic ray muons are introduced, and the possibilities of applying such technologies as new physical survey technologies for underground structures are suggested.

A Study on the Utilization Method in the SCW Method using Supplementary Cementitious Materials (시멘트 대체재료를 활용한 SCW공법에서의 활용 방안에 대한 연구)

  • Kwang-Wu Lee;Jae-Hyun Park;Young-Won Lee;Dae-Sung Cho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.87-95
    • /
    • 2023
  • Recently, redevelopment of the original downtown area is underway, the necessity of construction in adjacent location is increasing. However, excavations in dense urban areas are prone to ground problems due to various causes, so it is necessary to use materials and methods that can minimize such problems. As a general earth retaining method, various methods such as diaphragm wall and CIP method are applied using cement. However, since a large amount of cement is used for the installation of earth retaining method, it is necessary to conduct research on the development of new cement substitute materials to significantly reduce greenhouse gas emissions. In this study, we utilized the hardening reaction of blast furnace slag powder, desulfurized gypsum and high calcium fly ash by alkali activation and applied it to the SCW method. As a result, it was analyzed that the compressive strength of solidified soil using development solidification material was 96.2 ~ 106.3% of OPC at 28 days of curing. In addition, the strength increment ratio was 2.06 for sandy soil and 2.41 for clayey soil, which was higher than 1.85 of OPC. It seems an advantageous in terms of long-term strength. In addition, from the environmental point of view, it was analyzed that there is no elution of heavy metals and that greenhouse gas emissions can be dramatically reduced. Therefore, if further studies are conducted, it can be applied to the SCW method.

A Study on Construction of Digital Museum Archiving Regarding Dance Costume (무용공연작품 의상을 위한 디지털 뮤지엄 아카이빙 구축)

  • Jeong, Yu-Jin;Yoo, Ji-Young;Baek, Hyun-Soon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2019
  • This article aims to identify the characters and theme shown in dance costume and utilize them from an educational perspective by constructing digital museum archiving, which can be systematically collected, classified and stored from dance costume. It deals with definition of digital museum archiving as theoretical background and examples of how to create digital museum archiving as research content. The role that archiving plays in digital museum and effectiveness have been demonstrated. Archive is a term used to indicate extensive material and its storage and referred to as an integrative model of display in the computer-generated space. When it comes to producing dance costume as a form of digital museum, the museum is to be made in the computer-generated area of dance costume. The museum shows each division of major, medium and minor classification. The major classification divides genre of dance performance into Korean dance, modern dance and ballet. The middle involves choreographers, costume designers. The minor categorization includes newspaper, interviews, performance pictures, and programs. Digital museum has the value of space utilization, creation, culture, utilization of multiple educational programs, offering of digital museum content, two-way communication, and program development of the new display form.

Implementation of IoT-based carbon-neutral modular smart greenhouse (IoT 기반 탄소중립 모듈형 스마트 온실 구현)

  • Seok-Keun Park;Kil-Su Han;Min-Soon Lee;Changsun Shin
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.36-45
    • /
    • 2023
  • Recently, in digital agriculture, the types and utilization of greenhouses based on IoT are spreading, and greenhouses are being modernized, enlarged, and even factoryized using smart technology. However, a specific standardization plan has not been proposed according to the equipment for data collection in the smart greenhouse and the size or shape of the greenhouse. In other words, there is a lack of standard data for facility equipment, such as the type and number of sensors and equipment according to the size of the greenhouse, the type of greenhouse construction film and materials suitable for crops and carbon neutrality. Therefore, in this study, the suitability of the implementation, installation and quantity of IoT equipment for data collection was tested, and some standard technologies were presented through the implementation of data collection and communication methods. In addition, impact strength, tensile, tear, elongation, light transmittance, and lifespan issues for PE, PVC, and EVA, which account for about 90% of existing greenhouses, were presented, and the shape, size, and environmental problems of greenhouses made of films were presented. presented in the text. In this research paper, a standardized carbon-neutral modular smart greenhouse using nano-material film was implemented as a solution to environmental problems such as greenhouse size, farm crop type, greenhouse lifespan, and film, and its performance with existing greenhouses was analyzed and presented. Through this, we propose a modularized greenhouse that can be expanded or reduced freely without distinction in the size of the greenhouse or the shape of farmhouse crops, and the lifespan is extended and standardized. Finally, the average characteristics of greenhouses using existing PE, PVC, and EVA films and the characteristics of greenhouses using new carbon-neutral nanomaterials are compared and reviewed, and a plan to implement an expandable IoT greenhouse that supports carbon neutrality is proposed.

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

A Green View Index Improvement Program for Urban Roads Using a Green Infrastructure Theory - Focused on Chengdu City, Sichuan Province, China - (그린인프라스트럭처 개념을 적용한 가로 녹시율 개선 방안 - 중국 쓰촨성(四川省) 청두시(成都市)을 중심으로 -)

  • Hou, ShuJun;Jung, Taeyeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.61-74
    • /
    • 2023
  • The concept of "green infrastructure" emphasizes the close relationship between natural and urban social systems, thereby providing services that protect the ecological environment and improve the quality of human life. The Green View Index(GVI) is an important indicator for measuring the supply of urban green space and contains more 3D spatial elements concerning the green space ratio. This study focused on an area within the Third Ring Road in the city of Chengdu, Sichuan Province, China. The purposes of this study were three-fold. First, this study analyzed the spatial distribution characteristics of the GVI in urban streets and its correlation with the urban park green space system using Street View image data. Second to analyze the characteristics of low GVI streets were analyzed. Third, to analyze the connectivity between road traffic and street GVI using space syntax were analyzed. This study found that the Street GVI was higher in the southwestern part of the study area than in the northeastern part. The spatial distribution of the street GVI correlated with urban park green space. Second, the street areas with low GVI are mainly concentrated in areas with dense commercial facilities, areas with new construction, areas around elevated roads, roads below Class 4, and crossroads areas. Third, the high integration and low GVI areas were mainly concentrated within the First Ring Road in the city as judged by the concentration of vehicles and population. This study provides base material for future programs to improve the GVI of streets in Chengdu, Sichuan Province.

Scientific Examination of Quarries of the Stone Remains Excavated from the First Burial Site of King Jeongjo (전(傳) 정조대왕 초장지 출토 석물의 채석지에 대한 과학적 검토)

  • LEE Myeongseong;AHN Yubin;KIM Jiyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.196-212
    • /
    • 2023
  • This study identifies the origin of stone remains (pavement and banister stones) excavated from the first burial site of King Jeongjo through petro-mineralogical analysis in a quarry and examines the relationship with the stone remains from Geolleung (King Jeongjo's Tomb). The excavated stones from the first burial site of King Jeongjo are all light gray fine-grained biotite granite, and mainly contain quartz, feldspar, and biotite. The magnetic susceptibility of the stones ranges from 5.55 to 12.10 (average 7.00) (SI unit). According to old documents, the quarrying sites of the stones were Mts. Aengbong and Yeogisan (Godeung-dong District, Suwon), and we found a fine-grained biotite granite outcrop behind Mr. Aengbong (currently the site of Yeonggwang Apartment) with a geological survey, and it was petrologically similar to the stone remains from the first burial site. The magnetic susceptibility of the outcrop rocks was 5.15 to 7.24 (SI unit), and their petro-mineral and geochemical characteristics were found to be the same as those of the first buried site and Geolleung Tomb. It was confirmed that most of the stone elements in the first burial site were reused to build Geolleung Tomb while moving the grave. Only the pavement and banister stones seem to have been discarded in the first grave site without being transferred. This is because the size of the new burial mound became larger than the first grave during construction because Queen Hyoui (the consort of King Jeongjo) died and was buried together with the king in the same tomb, and the stone blocks did not fit a grave that size. With these research results, it was possible to compare and examine the old records and scientific analysis data, and they are expected to be used as basic source material in related research.