• Title/Summary/Keyword: new and renewable energy

Search Result 4,033, Processing Time 0.032 seconds

Optimization of ZnO-based transparent conducting oxides for thin-film solar cells based on the correlations of structural, electrical, and optical properties (ZnO 박막의 구조적, 전기적, 광학적 특성간의 상관관계를 고려한 박막태양전지용 투명전극 최적화 연구)

  • Oh, Joon-Ho;Kim, Kyoung-Kook;Song, Jun-Hyuk;Seong, Tae-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Transparent conducting oxides (TCOs) are of significant importance for their applications in various devices, such as light-emitting diodes, thin-film solar cells, organic light-emitting diodes, liquid crystal displays, and so on. In order for TCOs to contribute to the performance improvement of these devices, TCOs should have high transmittance and good electrical properties simultaneously. Sn-doped $In_2O_3$ (ITO) is the most commonly used TCO. However, indium is toxic and scarce in nature. Thus, ZnO has attracted a lot of attention because of the possibility for replacing ITO. In particular, group III impurity-doped ZnO showed the optoelectronic properties comparable to those of ITO electrodes. Al-doped ZnO exhibited the best performance among various doped ZnO films because of the high substitutional doping efficiency. However, in order for the Al-doped ZnO to replace ITO in electronic devices, their electrical and optical properties should further significantly be improved. In this connection, different ways such as a variation of deposition conditions, different deposition techniques, and post-deposition annealing processes have been investigated so far. Among the deposition methods, RF magnetron sputtering has been extensively used because of the easiness in controlling deposition parameters and its fast deposition rate. In addition, when combined with post-deposition annealing in a reducing ambient, the optoelectronic properties of Al-doped ZnO films were found to be further improved. In this presentation, we deposited Al-doped ZnO (ZnO:$Al_2O_3$ = 98:2 wt%) thin films on the glass and sapphire substrates using RF magnetron sputtering as a function of substrate temperature. In addition, the ZnO samples were annealed in different conditions, e.g., rapid thermal annealing (RTA) at $900^{\circ}C$ in $N_2$ ambient for 1 min, tube-furnace annealing at $500^{\circ}C$ in $N_2:H_2$=9:1 gas flow for 1 hour, or RTA combined with tube-furnace annealing. It is found that the mobilities and carrier concentrations of the samples are dependent on growth temperature followed by one of three subsequent post-deposition annealing conditions.

  • PDF

Honeycomb-type Single Chamber SOFC Running on Methane-Air Mixture (Methane-Air 혼합 Gas에서 구동하는 하니컴 형태의 SC-SOFC)

  • Park Byung-Tak;Yoon Sung Pil;Kim Hyun Jae;Nam Suk Woo;Han Jonghee;Lim Tae-Hoon;Hong Seong-Ahn;Lee Dokyol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.306-309
    • /
    • 2005
  • One of the most critical issues in sol id oxide fuel cell (SOFC)running on hydrocarbon fuels is the risk of carbon formation from the fuel gas. The simple method to reduce the risk of carbon formation from the reactions is to add steam to the fuel stream, leading to the carbon gasification react ion. However, the addition of steam to fuel is not appropriate for the auxiliary power unit (APU) and potable power generation (PPG) systems due to an increase of complexity and bulkiness. In this regard, many researchers have focused on so-called 'direct methane' operation of SOFC, which works with dry methane without coking. However, coking can be suppressed only by the operation with a high current density, which may be a drawback especially for the APU and PPG systems. The single chamber fuel cell (SC-SOFC) is a novel simplification of the conventional SOFC into which a premixed fuel/air mixture is introduced. It relies on the selectivity of the anode and cathode catalysts to generate a chemical potential gradient across the cell. Moreover it allows compact and seal-free stack design. In this study, we fabricated honeycomb type mixed-gas fuel cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-structured SOFC with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites. We will discuss that the anode supported honeycomb type cell running on mixed gas condition.

  • PDF

Generation of Charged Clusters and their Deposition in Polycrystalline Silicon Hot-Wire Chemical Vapor Deposition (열선 CVD 증착 다결정 실리콘에서 전하를 띈 클러스터의 생성 및 증착)

  • Lee, Jae-Ik;Kim, Jin-Yong;Kim, Do-Hyeon;Hwang, Nong-Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.561-566
    • /
    • 2005
  • Polycrystalline silicon films were deposited using hot wire CVD (HWCVD). The deposition of silicon thin films was approached by the theory of charged clusters (TCC). The TCC states that thin films grow by self-assembly of charged clusters or nanoparticles that have nucleated in the gas phase during the normal thin film process. Negatively charged clusters of a few nanometer in size were captured on a transmission electron microscopy (TEM) grid and observed by TEM. The negatively charged clusters are believed to have been generated by ion-induced nucleation on negative ions, which are produced by negative surface ionization on a tungsten hot wire. The electric current on the substrate carried by the negatively charged clusters during deposition was measured to be approximately $-2{\mu}A/cm^2$. Silicon thin films were deposited at different $SiH_4$ and $H_2$ gas mixtures and filament temperatures. The crystalline volume fraction, grain size and the growth rate of the films were measured by Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The deposit ion behavior of the si1icon thin films was related to properties of the charged clusters, which were in turn controlled by the process conditions. In order to verify the effect of the charged clusters on the growth behavior, three different electric biases of -200 V, 0 V and +25 V were applied to the substrate during the process, The deposition rate at an applied bias of +25 V was greater than that at 0 V and -200 V, which means that the si1icon film deposition was the result of the deposit ion of charged clusters generated in the gas phase. The working pressures had a large effect on the growth rate dependency on the bias appled to the substrate, which indicates that pressure affects the charging ratio of neutral to negatively charged clusters. These results suggest that polycrystalline silicon thin films with high crystalline volume fraction and large grain size can be produced by control1ing the behavior of the charged clusters generated in the gas phase of a normal HWCVD reactor.

  • PDF

A Study on Properites of PV Solar cell AZO thin films post-annealing by RTP technique (RTP 공정을 통한 태양전지용 AZO 박막의 후열처리 특성연구)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Han, Chang-Jun;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hea-Deok;Lee, Suk-Ho;Back, Su-Ung;Na, Kil-Ju;Jeong, Woon-Jo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.127.1-127.1
    • /
    • 2011
  • In this paper, ZnO:Al thin films with c-axis preferred orientation were prepared on Soda lime glass substrates by RF magnetron sputtering technique. AZO thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and substrate temperature conditions variously, structural and electrical characteristics were measured. For the manufacture of the AZO were vapor-deposited in the named order. It is well-known that post-annealing is an important method to improve crystal quality. For the annealing process, the dislocation nd other defects arise in the material and adsorption/decomposition occurs. The XRD patterns of the AZO films deposited with grey theory prediction design, annealed in a vacuum ambient($2.0{\times}10-3$Torr)at temperatures of 200, 300, 400 and $500^{\circ}C$ for a period of 30min. The diffraction patterns of all the films show the AZO films had a hexagonal wurtzite structure with a preferential orientation along the c-axis perpendicular to the substrate surface. As can be seen, the (002)peak intensities of the AZO films became more intense and sharper when the annealing temperature increased. On the other hand, When the annealing temperature was $500^{\circ}C$ the peak intensity decreased. The surface morphologies and surface toughness of films were examined by atomic force microscopy(AFM, XE-100, PSIA). Electrical resistivity, Gall mobility and carrier concentration were measured by Hall effect measuring system (HL5500PC, Accent optical Technology, USA). The optical absorption spectra of films in the ultraviolet-visibleinfrared( UV-Vis-IR) region were recorder by the UV spectrophotometer(U-3501, Hitachi, Japan). The resistivity, carrier concentration, and Hall mobility of ZnS deposited on glass substrate as a function of post-annealing.

  • PDF

Characterization of Ni-YSZ cermet anode for SOFC prepared by glycine nitrate process (Glycine nitrate process에 의한 제조된 SOFC anode용 Ni-YSZ cermet의 물성)

  • Lee, Tae-Suk;Ko, Jung-Hoon;Lee, Kang-Sik;Kim, Bok-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • Ni-YSZ (Yttria Stabilized Zirconia) composite powders were fabricated by glycine nitrate process. The prepared powders were sintered at $1300{\sim}1400^{\circ}C$ for 4 h in air and reduced at $1000^{\circ}C$ for 2 h in a nitrogen and hydrogen atmosphere. The microstructure, electrical conductivity, thermal expansion and mechanical properties of the Ni-YSZ cermets have been investigated with respect to the volume contents of Ni. A porous microstructure consisting of homogeneously distributed Ni and YSZ phases together with well-connected grains was observed. It was found that the open porosity, electrical conductivity, thermal expansion and bending strength of the cermets are sensitive to the volume content of Ni. The Ni-YSZ cermet containing 40 vol% Ni was ascertained to be the optimum composition. This composition offers sufficient open porosity of more than 30 %, superior electrical conductivities of 917.4 S/cm at $1000^{\circ}C$ and a moderate average thermal expansion coefficient of $12.6{\times}10^{-6}^{\circ}C^{-1}$ between room temperature and $1000^{\circ}C$.

Semantic Segmentation for Roof Extraction using Official Buildings Information (건물 통합 정보를 이용한 지붕 추출 의미론적 분류)

  • Youm, Sungkwan;Lee, Heekwon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.582-583
    • /
    • 2021
  • As the production of new and renewable energy such as solar and wind power has diversified, microgrid systems that can simultaneously produce and consume have been introduced. . In general, a decrease in electricity prices through solar power is expected in summer, so producer protection is required. In this paper, we propose a transparent and safe gift power transaction system between users using blockchain in a microgrid environment. A futures is simply a contract in which the buyer is obligated to buy electricity or the seller is obliged to sell electricity at a fixed price and a predetermined futures price. This system proposes a futures trading algorithm that searches for futures prices and concludes power transactions with automated operations without user intervention by using a smart contract, a reliable executable code within the blockchain network. If a power producer thinks that the price during the peak production period (Hajj) is likely to decrease during production planning, it sells futures first in the futures market and buys back futures during the peak production period (Haj) to make a profit in the spot market. losses can be compensated. In addition, if there is a risk that the price of electricity will rise when a sales contract is concluded, a broker can compensate for a loss in the spot market by first buying futures in the futures market and liquidating futures when the sales contract is fulfilled.

  • PDF

Design and fundamental test on the cargo pump sump scaled model of tankers (탱크선 카고 펌프장 축소모델 설계 및 기초 실험)

  • Lee, Jo-Yeon;Kim, Seung-Jun;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • The internal flow of a pump system that is installed in the interior of large vessels such as tankers is largely affected by the water level and flow conditions of the pump sump. However, the performance of the pump is generally evaluated with the consideration of only the performance of the pump itself, without considering the pumping station operating environment. Therefore, if the pump is affected by the incoming flow that exhibits vortex and swirl, the occurrence of vortex and swirl accompanied with air may cause problems with the pump sump. This effect of flow condition can lead to a decrease in efficiency, increase in vibration, and noise generation in the pump. In this study, to investigate the internal flow of the pump sump according to several water levels, a pump sump scale-model was designed and constructed. The frequency of vortex occurrence and the shape of the vortex were investigated according to the different water levels of a fundamental test. The Class C vortex type, which has a larger volume of air intake to the pump, was confirmed by the higher occurrence frequency at a relatively lower water level.

A Study on the Planning Technique of High-rised Housing Estates Applying Smart Green City Concept : Focus on Multi-functional Administrative City 2-1 Neighborhood (스마트 그린시티 개념을 적용한 고층주거단지 계획기법에 관한 연구 : 행정중심복합도시 2-1생활권을 중심으로)

  • Lee, Seo-Jeong;Lee, Eung-Hyun;Oh, Deog-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.379-387
    • /
    • 2016
  • The goal of this research is to identify the planning techniques of high-rise housing estates applying a smart green city concept in order to understand the necessity of integrating 'planning & building' planning techniques and 'smart system' planning techniques and to analyze the current status of application. For the research, firstl, the definition of smart green city was established and high-rise housing estates planning was categorized according to a three space hierarchy, seven planning directions and 17 major features through literature review. Second, 28 'planning & building' planning techniques and 'smart system' planning techniques were derived through literature review and FGI analysis. Last, four cases in Multi-functional Administrative City were analyzed for the current status of application of planning techniques. In conclusion, planning techniques in 'Transportation Network', 'Environment-friendly layout planning of housing', 'Revitalization of green transportation', 'Utilization of new & renewable energy', 'Crime prevention and accident reduction', 'Use of high performance, and efficiency facility' main feature were identified as important planning techniques for Smart Green City and its implications were estimated.

Flow Characteristics and Wind Loads on the Solar Panel and Floating System of Floating Solar Generato (부유식 태양광 발전기의 패널과 부유체에 작용하는 풍하중과 유동특성)

  • Ryu, Dae-Gyeom;Lee, Kye-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.229-235
    • /
    • 2019
  • A floating photovoltaic generation system is a new concept that combines existing photovoltaic generation technology with floating technology. This is installed in the water not on conventional land and a building. The system is designed as a unit module type that can be connected to other modules according to the power generation capacity, thereby forming a large-scale power generation facility. As a renewable energy source, it is composed of a floating structure, mooring device, photovoltaic power generation facility, and underwater cable. Because this system is installed outdoors, the effect of the wind load on the structure is very large. In this study, the wind loads most affected on the floating photovoltaic generation structure were obtained by computational fluid dynamic analysis. The flow characteristics and wind loads were analyzed for a range of wind orientations and angles of inclination. The analysis showed the position and magnitude of the maximum wind load to the wind direction and the flow characteristics around the solar panel and floating system. The wind load increased with increasing angle of inclination of the panel to the ground.

Using the Binomial Option Pricing Model for Strategic Sales of CER's to Improve the Economic Feasibility of CDM projects (이항옵션가격 모형을 활용한 CER 판매전략 구축과 이를 통한 CDM 사업 수익성 향상 방안에 관한 연구)

  • Koo, Bonsang;Park, Jong-Ho;Kim, Cheong-Woon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.1
    • /
    • pp.111-121
    • /
    • 2014
  • The Clean Development Mechanism (CDM) allows New & Renewable Energy projects to make additional income by selling CER's, which represent the amount of Green House Gases(GHG) that is reduced in the project. However, forward contracts used to hedge fluctuating market prices does not allow projects to sell CER's at a premium. As an alternate approach to maximize CER revenue, CER's are modeled as a 'real option', in which CER's are sold only above the desired sales price. Using the Binomial Option Pricing model, the resultant lattices are used to determine whether to sell, defer or abandon the option at individual nodes. Overlaying Pascal's Triangle on the lattices also enabled the calculation of the annual probabilities for deferring CER sales without incurring downside losses. Application to an actual Landfill Gas project showed increased overall NPV, and that CER sales could be deferred at a maximum of 2 years. The proposed framework allows transparency in the analysis and provides valuable and strategical information when making investment decisions related to CER sales of CDM projects.