• Title/Summary/Keyword: new address system

Search Result 508, Processing Time 0.029 seconds

Fast Join Mechanism that considers the switching of the tree in Overlay Multicast (오버레이 멀티캐스팅에서 트리의 스위칭을 고려한 빠른 멤버 가입 방안에 관한 연구)

  • Cho, Sung-Yean;Rho, Kyung-Taeg;Park, Myong-Soon
    • The KIPS Transactions:PartC
    • /
    • v.10C no.5
    • /
    • pp.625-634
    • /
    • 2003
  • More than a decade after its initial proposal, deployment of IP Multicast has been limited due to the problem of traffic control in multicast routing, multicast address allocation in global internet, reliable multicast transport techniques etc. Lately, according to increase of multicast application service such as internet broadcast, real time security information service etc., overlay multicast is developed as a new internet multicast technology. In this paper, we describe an overlay multicast protocol and propose fast join mechanism that considers switching of the tree. To find a potential parent, an existing search algorithm descends the tree from the root by one level at a time, and it causes long joining latency. Also, it is try to select the nearest node as a potential parent. However, it can't select the nearest node by the degree limit of the node. As a result, the generated tree has low efficiency. To reduce long joining latency and improve the efficiency of the tree, we propose searching two levels of the tree at a time. This method forwards joining request message to own children node. So, at ordinary times, there is no overhead to keep the tree. But the joining request came, the increasing number of searching messages will reduce a long joining latency. Also searching more nodes will be helpful to construct more efficient trees. In order to evaluate the performance of our fast join mechanism, we measure the metrics such as the search latency and the number of searched node and the number of switching by the number of members and degree limit. The simulation results show that the performance of our mechanism is superior to that of the existing mechanism.

A Mutual P3P Methodology for Privacy Preserving Context-Aware Systems Development (프라이버시 보호 상황인식 시스템 개발을 위한 쌍방향 P3P 방법론)

  • Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.18 no.1
    • /
    • pp.145-162
    • /
    • 2008
  • One of the big concerns in e-society is privacy issue. In special, in developing robust ubiquitous smart space and corresponding services, user profile and preference are collected by the service providers. Privacy issue would be more critical in context-aware services simply because most of the context data themselves are private information: user's current location, current schedule, friends nearby and even her/his health data. To realize the potential of ubiquitous smart space, the systems embedded in the space should corporate personal privacy preferences. When the users invoke a set of services, they are asked to allow the service providers or smart space to make use of personal information which is related to privacy concerns. For this reason, the users unhappily provide the personal information or even deny to get served. On the other side, service provider needs personal information as rich as possible with minimal personal information to discern royal and trustworthy customers and those who are not. It would be desirable to enlarge the allowable personal information complying with the service provider's request, whereas minimizing service provider's requiring personal information which is not allowed to be submitted and user's submitting information which is of no value to the service provider. In special, if any personal information required by the service provider is not allowed, service will not be provided to the user. P3P (Platform for Privacy Preferences) has been regarded as one of the promising alternatives to preserve the personal information in the course of electronic transactions. However, P3P mainly focuses on preserving the buyers' personal information. From time to time, the service provider's business data should be protected from the unintended usage from the buyers. Moreover, even though the user's privacy preference could depend on the context happened to the user, legacy P3P does not handle the contextual change of privacy preferences. Hence, the purpose of this paper is to propose a mutual P3P-based negotiation mechanism. To do so, service provider's privacy concern is considered as well as the users'. User's privacy policy on the service provider's information also should be informed to the service providers before the service begins. Second, privacy policy is contextually designed according to the user's current context because the nomadic user's privacy concern structure may be altered contextually. Hence, the methodology includes mutual privacy policy and personalization. Overall framework of the mechanism and new code of ethics is described in section 2. Pervasive platform for mutual P3P considers user type and context field, which involves current activity, location, social context, objects nearby and physical environments. Our mutual P3P includes the privacy preference not only for the buyers but also the sellers, that is, service providers. Negotiation methodology for mutual P3P is proposed in section 3. Based on the fact that privacy concern occurs when there are needs for information access and at the same time those for information hiding. Our mechanism was implemented based on an actual shopping mall to increase the feasibility of the idea proposed in this paper. A shopping service is assumed as a context-aware service, and data groups for the service are enumerated. The privacy policy for each data group is represented as APPEL format. To examine the performance of the example service, in section 4, simulation approach is adopted in this paper. For the simulation, five data elements are considered: $\cdot$ UserID $\cdot$ User preference $\cdot$ Phone number $\cdot$ Home address $\cdot$ Product information $\cdot$ Service profile. For the negotiation, reputation is selected as a strategic value. Then the following cases are compared: $\cdot$ Legacy P3P is considered $\cdot$ Mutual P3P is considered without strategic value $\cdot$ Mutual P3P is considered with strategic value. The simulation results show that mutual P3P outperforms legacy P3P. Moreover, we could conclude that when mutual P3P is considered with strategic value, performance was better than that of mutual P3P is considered without strategic value in terms of service safety.

Is Fertility Rate Proportional to the Quality of Life? An Exploratory Analysis of the Relationship between Better Life Index (BLI) and Fertility Rate in OECD Countries (출산율은 삶의 질과 비례하는가? OECD 국가의 삶의 질 요인과 출산율의 관계에 관한 추이분석)

  • Kim, KyungHee;Ryu, SeoungHo;Chung, HeeTae;Gim, HyeYeong;Park, HeongJoon
    • International Area Studies Review
    • /
    • v.22 no.1
    • /
    • pp.215-235
    • /
    • 2018
  • Policy concerns related to raising fertility rates are not only common interests among the OECD countries, but they are also issues of great concern to South Korea whose fertility rate is the lowest in the world. The fertility rate in South Korea continues to decline, even though most of the national budget has been spent on measures to address this and many studies have been conducted on the increase in the fertility rates. In this regard, this study aims to verify the effectiveness of the detailed factors affecting the fertility rate that have been discussed in the previous studies on fertility rates, and to investigate the overall trend toward enhancing the quality of life and increasing the fertility rate through macroscopic and structural studies under the recognition of problems related to the policy approaches through the case studies of the European countries. Toward this end, this study investigated if a high quality of life in advanced countries contributes to the increase in the fertility rate, which country serves as a state model that has a high quality of life and a high fertility rate, and what kind of social and policy environment does the country have with regard to childbirth. The analysis of the OECD Better Life Index (BLI) and CIA fertility rate data showed that the countries whose people enjoy a high quality of life do not necessarily have high fertility rates. In addition, under the recognition that a country with a high quality of life and a high birth rate serves as a state model that South Korea should aim for, the social characteristics of Iceland, Ireland, and New Zealand, which turned out to have both a high quality of life and a high fertility rate, were compared with those of Germany, which showed a high quality of life but a low fertility rate. According to the comparison results, the three countries that were mentioned showed higher awareness of gender equality; therefore, the gender wage gap was small. It was also confirmed that the governments of these countries support various policies that promote both parents sharing the care of their children. In Germany, on the other hand, the gender wage gap was large and the fertility rate was low. In a related move, however, the German government has made active efforts to a paradigm shift toward gender equality. The fertility rate increases when the synergy lies in the relationship between parents and children; therefore, awareness about gender equality should be firmly established both at home and in the labor market. For this reason, the government is required to provide support for the childbirth and rearing environment through appropriate family policies, and exert greater efforts to enhance the effectiveness of the relevant systems rather than simply promoting a system construction. Furthermore, it is necessary to help people in making their own childbearing decisions during the process of creating a better society by changing the national goal from 'raising the fertility rate' to 'creating a healthy society made of happy families'

Financial Condition and the Determinants of Credit Ratings in Korean Small and Medium-Sized Business (중소상공인의 금융현황과 신용등급의 결정요인 관련 연구)

  • Kang, Hyoung-Goo;Binh, Ki Beom;Lee, Hong-Kyun;Koo, Bonha
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.6
    • /
    • pp.135-154
    • /
    • 2020
  • This paper analyzes the 5,521 samples of the small and medium-sized businesses(SMBs) obtained from the Korea Credit Guarantee Fund. From January 2014 to September 2019, 85% of the SMBs have 5 or fewer full-time employees. The proportion of SMBs is overwhelmed by the elderly men, and most founders are the CEO. Also, about 87% of the workplace types are rented, while 64% of the CEO's residence types are owner-occupation. 47% of the financial grade score is less than 10 points out of 100 and 80% of SMBs have less than 200 million won of the loan guarantee. In particular, the total guarantee loan amount or the days of net guarantee have significantly positive relations with the working period of the CEO in the same industry, the number of employees, the operation period of SMBs, and the corporate business type. In the case of the financial grading score which has the highest weight in overall credit rating gets higher with the higher number of employees, the longer the operation period, and the corporate business type. However, the quantified non-financial grading score has no significant relationship with other explanatory variables, except for the corporate business type. This implies that a non-financial grade score is measured by other determinants that are not observed by the Korea credit guarantee fund. The pure non-financial grade score has positive relations with the working period of the CEO. Overall, this paper would help Korean SMBs upgrade their credit ratings and expand the money supply when there is no standardized credit rating model or no publicly available evaluation criteria for SMBs. We expect this paper provides important insights for further research and policy-makers for SMBs. In particular, to address the financial needs of thin-filers such as SMBs, technology-based financial services (TechFin) would use alternative data to evaluate the financial capabilities of thin-filers and to develop new financial services.

The Case Study on Industry-Leading Marketing of Woori Investment and Securities (우리투자증권의 시장선도 마케팅 사례연구)

  • Choi, Eun-Jung;Lee, Sung-Ho;Lee, Sanghyun;Lee, Doo-Hee
    • Asia Marketing Journal
    • /
    • v.13 no.4
    • /
    • pp.227-251
    • /
    • 2012
  • This study analyzed Woori Investment and Securities' industry-leading marketing from both a brand management and a marketing decision-making perspective. By executing a different marketing strategy from its competitors, Woori Investment and Securities recognized recent changes in the asset management and investment markets as an open opportunity, and quickly responded to the market changes. First, the company launched the octo brand as a multi-account product, two years before its competitors offered their own products. In particular, it created a differentiated brand image, using the blue octopus character, which became familiar to the general financial community, and was consistently employed as part of an integrated marketing communications strategy. Second, it executed a brand expansion strategy by sub-branding octo in a variety of new financial products, responding to rapid changes in the domestic financial and asset management markets. Through this strategic evolution, the octo brand became a successful wealth management brand and representative of Woori Investment & Securities. Third, it has converged market research, demand and trend analysis, and customer needs acquired through various customer contact channels into a marketing perspective. Thus, marketing has participated in the product development stage, a rarity in the finance industry. Woori Investment and Securities has a leading marketing system. The heart of the successful product creation lies in a collaboration of their customer bases among the finance companies in the Woori Financial Group. The present study suggested a corresponding strategy for octo brand, which is expected to enter into the maturity stage of its product life cycle. In addition, this study found a need to modify the current positioning strategy in order to position and preserve sustainability in the increasingly competitive asset management market. It also suggested the need for an offensive strategy to counter the number one M/S company, and address the issue of cannibalism in the Woori Financial Group.

  • PDF

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

A New Exploratory Research on Franchisor's Provision of Exclusive Territories (가맹본부의 배타적 영업지역보호에 대한 탐색적 연구)

  • Lim, Young-Kyun;Lee, Su-Dong;Kim, Ju-Young
    • Journal of Distribution Research
    • /
    • v.17 no.1
    • /
    • pp.37-63
    • /
    • 2012
  • In franchise business, exclusive sales territory (sometimes EST in table) protection is a very important issue from an economic, social and political point of view. It affects the growth and survival of both franchisor and franchisee and often raises issues of social and political conflicts. When franchisee is not familiar with related laws and regulations, franchisor has high chance to utilize it. Exclusive sales territory protection by the manufacturer and distributors (wholesalers or retailers) means sales area restriction by which only certain distributors have right to sell products or services. The distributor, who has been granted exclusive sales territories, can protect its own territory, whereas he may be prohibited from entering in other regions. Even though exclusive sales territory is a quite critical problem in franchise business, there is not much rigorous research about the reason, results, evaluation, and future direction based on empirical data. This paper tries to address this problem not only from logical and nomological validity, but from empirical validation. While we purse an empirical analysis, we take into account the difficulties of real data collection and statistical analysis techniques. We use a set of disclosure document data collected by Korea Fair Trade Commission, instead of conventional survey method which is usually criticized for its measurement error. Existing theories about exclusive sales territory can be summarized into two groups as shown in the table below. The first one is about the effectiveness of exclusive sales territory from both franchisor and franchisee point of view. In fact, output of exclusive sales territory can be positive for franchisors but negative for franchisees. Also, it can be positive in terms of sales but negative in terms of profit. Therefore, variables and viewpoints should be set properly. The other one is about the motive or reason why exclusive sales territory is protected. The reasons can be classified into four groups - industry characteristics, franchise systems characteristics, capability to maintain exclusive sales territory, and strategic decision. Within four groups of reasons, there are more specific variables and theories as below. Based on these theories, we develop nine hypotheses which are briefly shown in the last table below with the results. In order to validate the hypothesis, data is collected from government (FTC) homepage which is open source. The sample consists of 1,896 franchisors and it contains about three year operation data, from 2006 to 2008. Within the samples, 627 have exclusive sales territory protection policy and the one with exclusive sales territory policy is not evenly distributed over 19 representative industries. Additional data are also collected from another government agency homepage, like Statistics Korea. Also, we combine data from various secondary sources to create meaningful variables as shown in the table below. All variables are dichotomized by mean or median split if they are not inherently dichotomized by its definition, since each hypothesis is composed by multiple variables and there is no solid statistical technique to incorporate all these conditions to test the hypotheses. This paper uses a simple chi-square test because hypotheses and theories are built upon quite specific conditions such as industry type, economic condition, company history and various strategic purposes. It is almost impossible to find all those samples to satisfy them and it can't be manipulated in experimental settings. However, more advanced statistical techniques are very good on clean data without exogenous variables, but not good with real complex data. The chi-square test is applied in a way that samples are grouped into four with two criteria, whether they use exclusive sales territory protection or not, and whether they satisfy conditions of each hypothesis. So the proportion of sample franchisors which satisfy conditions and protect exclusive sales territory, does significantly exceed the proportion of samples that satisfy condition and do not protect. In fact, chi-square test is equivalent with the Poisson regression which allows more flexible application. As results, only three hypotheses are accepted. When attitude toward the risk is high so loyalty fee is determined according to sales performance, EST protection makes poor results as expected. And when franchisor protects EST in order to recruit franchisee easily, EST protection makes better results. Also, when EST protection is to improve the efficiency of franchise system as a whole, it shows better performances. High efficiency is achieved as EST prohibits the free riding of franchisee who exploits other's marketing efforts, and it encourages proper investments and distributes franchisee into multiple regions evenly. Other hypotheses are not supported in the results of significance testing. Exclusive sales territory should be protected from proper motives and administered for mutual benefits. Legal restrictions driven by the government agency like FTC could be misused and cause mis-understandings. So there need more careful monitoring on real practices and more rigorous studies by both academicians and practitioners.

  • PDF

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.