• Title/Summary/Keyword: new activation function

Search Result 157, Processing Time 0.033 seconds

Establishment of Early Verification Method for Introduction of the Binary Trans-activation System in Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) (배추 작물에 이원적 전사유도 시스템 도입을 위한 조기 검증방법 확립)

  • Kim, Soo-Yun;Yu, Hee-Ju;Kim, Jeong-Ho;Cho, Myeong-Cheoul;Park, Mehea
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.95-102
    • /
    • 2013
  • Binary trans-activation (pOp/LhG4) system is one of the regulatory systems of transgene expression. The target gene expression is achieved by crossing the reporter plants with an activator in this system. In this study, we used the features of this system in Chinese cabbage as a way to protect genetic resources and new varieties. To establish pOp/LhG4 system in Chinese cabbage, we designed an activator (35SLhG41300), and reporter constructs (pOpGUSBart) and co-transformed using Agrobacterium. The transgenic plants were selected by antibiotics and the functional activity of pOp/LhG4 system was confirmed by GUS expression. To induce the tissue-specific function, we constructed pOp/LhG4 system (795LhGBart) using female tissue specific promoter (ProAt1g26795) of Arabidopsis. Co-transformed transgenic plants clearly showed tissue specific expression in Arabidopsis. The results suggest the possibility of the system's application of $F_1$ generation can be restricted by expressing the target gene to protect a new variety and genetic resource in Chinese cabbages.

A Study on Improvement of Inspection Items for Activation of the Information Security Pre-inspection (정보보호 사전점검 활성화를 위한 점검항목 개선 연구)

  • Choi, Ju Young;Kim, JinHyung;Park, Jung-Sub;Park, Choon Sik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.933-940
    • /
    • 2015
  • IT environments such as IoT, SNS, BigData, Cloud computing are changing rapidly. These technologies add new technologies to some of existing technologies and increase the complexity of Information System. Accordingly, they require enhancing the security function for new IT services. Information Security Pre-inspection aims to assure stability and reliability for user and supplier of new IT services by proposing development stage which considers security from design phase. Existing 'Information Security Pre-inspection' (22 domains, 74 control items, 129 detail items) consist of 6 stage (Requirements Definition, Design, Training, Implementation, Test, Sustain). Pilot tests were executed for one of IT development companies to verify its effectiveness. Consequently, for some inspection items, some improvement requirements and reconstitution needs appeared. This paper conducts a study on activation of 'Information Security Pre-inspection' which aims to construct prevention system for new information system. As a result, an improved 'Information Security Pre-inspection' is suggested. This has 16 domains, 54 inspection items, 76 detail items which include some improvement requirements and reconstitution needs.

Study on the New Type of Industrial Complex in Response to Changes in Industrial Environment: Network-type Industrial Complex (산업환경 변화에 대응한 새로운 산업단지 유형 개발 연구: 네트워크형 산업단지)

  • Lee, Hyeon-joo;Kim, Tae-gyun;Choi, Dae-sik;Lee, Eun-Yeob;Song, Youngil
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.522-535
    • /
    • 2017
  • It is necessary to develop a new location model to support the application of smart technology and confluence in the 4th industrial revolution era. In this study, we propose 'network-type industrial complex' as a method to link several industrial integrated spaces which are dispersed in an area. As a result of conducting a survey of companies in order to develop a new location model, about 89% of companies recognized the necessity of network-type industrial complex. As a condition for activation of the industrial complex, 'complementary function formation', and 'convenience of nodular transportation' were selected. It is expected that it will be possible to supply low-cost, high-efficiency industrial complexes through opening and linking with urban space and infrastructure sharing.

A Gene Functional Study of Rice Using Ac/Ds Insertional Mutant Population

  • Kim, So-Young;Kim, Chang-Kug;Kang, Min;Ji, Seung-Uk;Yoon, Ung-Han;Kim, Yong-Hwan;Lee, Gang-Seob
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • Rice is the staple food of more than 50% of the world population. Cultivated rice has the AA genome (diploid, 2n = 24) and small genome size of only 430 megabase (haploid genome). As the sequencing of rice genome was completed by the International Rice Genome Sequencing Project (IRGSP), many researchers in the world have been working to explore the gene function on rice genome. Insertional mutagenesis has been a powerful strategy for assessing gene function. In maize, well characterized transposable elements have traditionally been used to clone genes for which only phenotypic information is available. In rice endogenous mobile elements such as MITE and Tos have been used to generate gene-tagged populations. To date T-DNA and maize transposable element systems have been utilized as main insertional mutagens in rice. The Ac/Ds system offers the advantage of generating new mutants by secondary transposition from a single tagged gene. To enhance the efficiency of gene detection, advanced gene-tagging systems (i.e. activation, gene or enhancer trap) have been employed for functional genomic studies in rice. Internationally, there have been many projects to develop large scales of insertional mutagenized populations and databases of insertion sites has been established. Ultimate goals of these projects are to supply genetic materials and informations essential for functional analysis of rice genes and for breeding using agronomically important genes. In this report, we summarize the current status of Ac/Ds-mediated gene tagging systems that has been conducted by collaborative works in Korea.

Effects of gas signaling molecule SO2 in cardiac functions of hyperthyroid rats

  • Qi Yang;Ting Yang;Xing Liu;Shengquan Liu;Wei Liu;Liangui Nie;Chun Chu;Jun Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • Sulfur dioxide (SO2), a novel endogenous gas signaling molecule, is involved in the regulation of cardiac function. Exerting a key role in progression of hyperthyroidism-induced cardiomyopathy (HTC), myocardial fibrosis is mainly caused by myocardial apoptosis, leading to poor treatment outcomes and prognoses. This study aimed to investigate the effect of SO2 on the hyperthyroidism-induced myocardial fibrosis and the underlying regulatory mechanisms. Elisa, Masson staining, Western-Blot, transmission electron microscope, and immunofluorescence were employed to evaluate the myocardial interstitial collagen deposition, endoplasmic reticulum stress (ERS), apoptosis, changes in endogenous SO2, and Hippo pathways from in vitro and in vivo experiments. The study results indicated that the hyperthyroidism-induced myocardial fibrosis was accompanied by decreased cardiac function, and down-regulated ERS, apoptosis, and endogenous SO2-producing enzyme aspartate aminotransferase (AAT)1/2 in cardiac myocytes. In contrast, exogenous SO2 donors improved cardiac function, reduced myocardial interstitial collagen deposition, up-regulated AAT1/2, antagonized ERS and apoptosis, and inhibited excessive activation of Hippo pathway in hyperthyroid rats. In conclusion, the results herein suggested that SO2 inhibited the overactivation of the Hippo pathway, antagonized ERS and apoptosis, and alleviated myocardial fibrosis in hyperthyroid rats. Therefore, this study was expected to identify intervention targets and new strategies for prevention and treatment of HTC.

EFFECTS OF SODIUM NITROPRUSSIDE ON THE FORMATION AND ACTIVATION OF THE OSTEOCLAST IN CULTURE

  • Yoo, Young-Jae;Kim, Jung-Kun;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.25 no.6 s.53
    • /
    • pp.705-714
    • /
    • 1995
  • Due to the great deal of effort that has gone into the study of osteoclastic differentiation and activation over the last few decades, the mechanisms of these two events have been discovered gradually. Nitric oxide($NO^-$), which is produced from arginine by a nitric oxide synthase, opened up a new area of biological research. Recently, it has been reported that $NO^-$ is produced by osteoblasts stimulated by lipopolysaccharide and several other cytokines. In this study, the effect of sodium nitroprusside(SNP), a donor of nitric oxide($NO^-$), on osteoclast-like cell formation and on mature osteoclast function was examined. To determine the mechanism of the inhibitory effects of SNP decreased not only the basal $^{45}Ca$ release but also thee bone resorption induced by PTH and 1,25-dihydroxyvitamin $D_3\;(1,25[OH]_{2}D_3)$. The inhibitory effect of SNP on bone resorption induced by PTH appeared 2 dyas after treatment, whereas SNP effect on inhibiting bone resorption induced by $1,25[OH]_{2}D_3$ appeared at the thhird days. When chicken and rat osteeoclasts were cultured on dentin slices, treatment of $300{\mu}M$ SNP resulted in a significant decrease in dentin resorption by osteoclasts in terms of total resolution area and average individual area. We also examind the effect of SNP on formation of osteoclast-like cells that is TRAP-positive multinucleated cells from chicken and rat bone marrow cells in the presence or absence of $10^{-8}\;M\;1,25[OH]_{2}D_3$. The addition of $300{\mu}M$ SNP inhibiteed the formation of TRAP-positive multinucleated cells. The present data suggest that SNP, possibly as a $NO^-$ donor, inhibits the osteoclastic differentiation and osteoclastic activity.

  • PDF

Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells

  • Yang, Seoyeon;Lee, Ji-Yeon;Hur, Ho;Oh, Ji Hoon;Kim, Myoung Hee
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.450-455
    • /
    • 2018
  • Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

Molecular Genetic Analysis of Leaf Senescence in Arabidopsis

  • Woo, Hye-Ryun;Lee, Ung;Cho, Sung-Whan;Lim, Pyung-Ok;Nam, Hong-Gil
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.259-268
    • /
    • 2000
  • Senescence is a sequence of biochemical and physiological events that lead to death of a cell, organ, or whole organism. Senescence is now clearly regarded as a genetically determined and evolutionarilly acquired developmental process comprising the final stage of development. However, in spite of the biological and practical importance, genetic mechanism of senescence has been very limited. Through forward and reverse genetic approaches, we are trying to reveal the molecular and genetic mechanism of senescence in plants, employing leaf organs of Arabidopsis as a model system. Using forward genetic approach, we have initially isolated several delayed senescence mutants either from T-DNA insertional lines or chemical-mutagenized lines. In the case of ore 4 and ore 9 mutants, the mutated genes were identified. The recent progress on characterization of mutants and identification of the mutated genes will be reported. We are also screening mutations from other various sources of mutant pools, such as activation tagging lines and promoter trap lines. Two dominant senescence-delayed mutants were isolated from the activation tagging pool. Cloning of the genes responsible for this phenotype is in progress. For reverse genetic approach, the genes that induced during leaf senescence were first isolated by differential screening method. We are currently using PCR-based suppression subtractive hybridization, designed to enrich a cDNA library for rare differentially expressed transcripts. Using this method, we have identified over 35 new sequences that are upregulated at leaf senescence stage. We are investigating the function of these novel genes by systemically generating antisense lines.

  • PDF

Explicit Categorization Ability Predictor for Biology Classification using fMRI

  • Byeon, Jung-Ho;Lee, Il-Sun;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.3
    • /
    • pp.524-531
    • /
    • 2012
  • Categorization is an important human function used to process different stimuli. It is also one of the most important factors affecting measurement of a person's classification ability. Explicit categorization, the representative system by which categorization ability is measured, can verbally describe the categorization rule. The purpose of this study was to develop a prediction model for categorization ability as it relates to the classification process of living organisms using fMRI. Fifty-five participants were divided into two groups: a model generation group, comprised of twenty-seven subjects, and a model verification group, made up of twenty-eight subjects. During prediction model generation, functional connectivity was used to analyze temporal correlations between brain activation regions. A classification ability quotient (CQ) was calculated to identify the verbal categorization ability distribution of each subject. Additionally, the connectivity coefficient (CC) was calculated to quantify the functional connectivity for each subject. Hence, it was possible to generate a prediction model through regression analysis based on participants' CQ and CC values. The resultant categorization ability regression model predictor was statistically significant; however, researchers proceeded to verify its predictive ability power. In order to verify the predictive power of the developed regression model, researchers used the regression model and subjects' CC values to predict CQ values for twenty-eight subjects. Correlation between the predicted CQ values and the observed CQ values was confirmed. Results of this study suggested that explicit categorization ability differs at the brain network level of individuals. Also, the finding suggested that differences in functional connectivity between individuals reflect differences in categorization ability. Last, researchers have provided a new method for predicting an individual's categorization ability by measuring brain activation.

Si and Mg Coatings on the Hydroxyapatite Film Formed Ti-29Nb-xHf Alloys by Plasma Electrolyte Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.152-152
    • /
    • 2017
  • Titanium and its alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element,such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}$-stabilizer and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Therefore, in this study, Si and Mg coatings on the hydroxyapatite film formed Ti-29Nb-xHf alloys by plasma electrolyte oxidation has been investigated using several experimental techniques. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. The electrolyte was Si and Mg ions containing calcium acetate monohydrate + calcium glycerophosphate at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF