• Title/Summary/Keyword: neutron activation analysis

Search Result 183, Processing Time 0.021 seconds

Neutronic design of pulsed neutron facility (PNF) for PGNAA studies of biological samples

  • Oh, Kyuhak
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.262-268
    • /
    • 2022
  • This paper introduces a novel concept of the pulsed neutron facility (PNF) for maximizing the production of the thermal neutrons and its application to medical use based on prompt gamma neutron activation analysis (PGNAA) using Monte Carlo simulations. The PNF consists of a compact D-T neutron generator, a graphite pile, and a detection system using Cadmium telluride (CdTe) detector arrays. The configuration of fuel pins in the graphite monolith and the design and materials for the moderating layer were studied to optimize the thermal neutron yields. Biological samples - normal and cancerous breast tissues - including chlorine, a trace element, were used to investigate the sensitivity of the characteristic γ-rays by neutron-trace material interactions and the detector responses of multiple particles. Around 90 % of neutrons emitted from a deuterium-tritium (D-T) neutron generator thermalized as they passed through the graphite stockpile. The thermal neutrons captured the chlorines in the samples, then the characteristic γ-rays with specific energy levels of 6.12, 7.80 and 8.58 MeV were emitted. Since the concentration of chlorine in the cancerous tissue is twice that in the normal tissue, the count ratio of the characteristic g-rays of the cancerous tissue over the normal tissue is approximately 2.

Design and optimization of thermal neutron activation device based on 5 MeV electron linear accelerator

  • Mahnoush Masoumi;S. Farhad Masoudi;Faezeh Rahmani
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4246-4251
    • /
    • 2023
  • The optimized design of a Neutron Activation Analysis (NAA) system, including Delayed Gamma NAA (DGNAA) and Prompt Gamma NAA (PGNAA), has been proposed in this research based on Mevex Linac with 5 MeV electron energy and 50 kW power as a neutron source. Based on the MCNPX 2.6 simulation, the optimized configuration contains; tungsten as an electron-photon converter, BeO as a photoneutron target, BeD2 and plexiglass as moderators, and graphite as a reflector and collimator, as well as lead as a gamma shield. The obtained thermal neutron flux at the beam port is equal to 2.06 × 109 (# /cm2.s). In addition, using the optimized neutron beam, the detection limit has been calculated for some elements such as H-1, B-10, Na-23, Al-27, and Ti-48. The HPGe Coaxial detector has been used to measure gamma rays emitted by nuclides in the sample. By the results, the proposed system can be an appropriate solution to measure the concentration and toxicity of elements in different samples such as food, soil, and plant samples.

Design, construction, and characterization of a Prompt Gamma Neutron Activation Analysis (PGNAA) system at Isfahan MNSR

  • M.H. Choopan Dastjerdi;J. Mokhtari;M. Toghyani
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4329-4334
    • /
    • 2023
  • In this research, a prompt gamma neutron activation analysis (PGNAA) system is designed and constructed based on the use of a low power research reactor. For this purpose, despite the fact that this reactor did not include beam tubes, a thermal neutron beam line is installed inside the reactor tank. The extraction of the beam line from inside the tank made it possible to provide the neutron flux from the order of 106 n.cm-2.s-1. Also, because the beam line is installed in a tangential position to the reactor core, its gamma level has been minimized. Also, a suitable radiation shield is considered for the detector to minimize the background radiation and prevent radiation damage to the detector. Calculations and measurements are done in order to characterize this system, as well as spectrometry of several samples. The results of evaluations and experiments show that this system is suitable for performing PGNAA.

ACTIVATION ANALYSIS OF ENVIRONMENTAL SAMPLES USING THE MT-25 MICROTRON OF THE FLNR

  • Maslov, O.D.;Belov, A.G.;Starodub, G.Ya.;Dmitriev, S.N.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.815-820
    • /
    • 1995
  • Instrumental neutron and gamma activation analysis of coal and combustion products, determination of platinum content in natural samples by radiochemical gamma activation analysis and high-sensitive track method of thorium determination has been studied with the use of the MT-25 microtron.The optimal conditions for complete elemental analysis of coal and combustion products, isolation and determination of platinum and thorium are recommended.

  • PDF

A Study on the Trace Metal Contents in Food by Neutron Activation Analysis (방사화 분석법에 의한 식품 중 미량금속(Mg, Zn, Mn, Mo and Se)에 관한 연구)

  • 이숙경
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.4
    • /
    • pp.328-332
    • /
    • 1997
  • In order to investigate the trace metals in Korean foods, the contents of Magnesium, Zinc, Manganese, Molybdenum and Selenium are studied in this paper. As show in the Table 1; a total of 250 samples of 25 species were analyzed by neutron activation analysis. The results obtained were as follows; 1. The overall ranges and mean (mg/100 g) were; Mg, 12.212∼151.346(55.164); Zn, 0.045∼38.180 (2.473); Mn, 0.003∼0.796 (0.225);Mo, ND∼0.035 (0.007); Se, ND∼0.069 (0.016). 2. The levels of all metals except Mo in shell fishes were high and the level of Mo in spices was higher than that in other foods. 3. The levels of Zn and Mo in oyster were higher than another spcies.

  • PDF

Determination of trace elements in food reference materials by instrumental neutron activation analysis

  • Cho, K.H.;Zeisler, R.;Park, K.W.
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.520-528
    • /
    • 2005
  • Two biological Certified Reference Materials (CRMs), KRISS 108-04-001 (oyster tissue) and 108-05-001 (water dropwort stem), were prepared by Korea Research Institute of Standards and Science (KRISS)during FY '01. The certified values of these materials had been determined by Isotope Dilution Mass Spectrometry (IDMS) for six elements (Cd, Cr, Cu, Fe, Pb and Zn). Additional analytical works are now progressing to certify the concentrations of a number of the environmental and nutrimental elements in these CRMs. The certified values in a CRM are usually determined by using a single primary method with confirmation by other method(s) or using two independent critically-evaluated methods. Instrumental Neutron Activation Analysis (INAA) plays an important role in the determination of certified values as it can eliminate the possibility of common error sources resulting from sample dissolution. In this study INAA procedure was used in determination of 23 elements in these two biological CRMs to acquire the concentration information and the results were compared with KRISS certified values.

A study of neutron activation analysis compared to inductively coupled plasma atomic emission spectrometry for geological samples in Iran

  • Mohammadzadeh, Mohammad;Ajami, Mona;shadeghipanah, Arash;Rezvanifard, Mehdi
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1349-1354
    • /
    • 2018
  • Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) is widely used for the determination of trace elements in geological samples in Iran. In this paper, we have calculated the detection limits of neutron activation analysis (NAA) for some of the common elements in such samples utilizing the ORIGEN and MCNP codes and verified the simulations using the experimental results of three soil standard reference materials, namely, G02.SRM, G18.SRM, and G28.SRM. The results show that while the detection limit of ICP-AES method is usually in the mg/kg range, it is represented to the ${\mu}g/kg$ range for most of the elements of interest using the NAA method, and the simulations can be verified in a tolerance range of 20%.

Characterization of Korean Clays and Pottery by Neutron Activation Analysis(II). Characterization of Korean Potsherds

  • Lee, Chul;Kwun, Oh-Cheun;Kim, Seung-Won;Lee, Ihn-Chong;Kim, Nak-Bae
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.347-353
    • /
    • 1986
  • Fisher's discriminant method has been applied to the problem of the classification of Korean potsherds, using their elemental composition as analyzed by neutron activation analysis. A combination of analytical data by means of statistical linear discriminant analysis has resulted in removal of redundant variables, optimal linear combination of meaningful variables and formulation of classification rules.

Thermal Neutron Activation Analysis of Vanadium and Manganese in Ginseng using 3.76-Minute Vanadium-52 and 2.58 Hour Manganese-56 (人蔘中의 Vanadium 및 Manganese의 熱中性子에 依한 放射化分析)

  • Chong Jin Lee;Chong Kuk Kim;Jin Ha Park
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.13-16
    • /
    • 1963
  • Thermal neutron activation analysis was applied to determine the trace amount of Vanadium and Manganese in Buyo and Kumsan Ginseng. These elements have been regarded to have great nutritional value and one of the indispensable factor in the growth of ginseng. The TRIGA MARK II Reactor in Atomic Energy Research Institute was used for the neutron source. The samples were irradiated for 10 minutes for Vanadium and for 5 minutes for Manganese at the neutron flux of about $1.28{\times}10^{12}n/cm^2/sec$ and the RCL 256 Channel Pulse-Height Analyzer connected with $2"{\times}2"$ Nal(Tl) was used for activity determination. The amounts were about 0.02 ppm for Vanadium and 20 ppm for Manganese, and it was also found that the amounts of the elements were slightly different depending on the kinds of ginsengs.

  • PDF