• 제목/요약/키워드: neutral differential equations

검색결과 56건 처리시간 0.022초

Oscillation of Linear Second Order Delay Dynamic Equations on Time Scales

  • Agwo, Hassan Ahmed
    • Kyungpook Mathematical Journal
    • /
    • 제47권3호
    • /
    • pp.425-438
    • /
    • 2007
  • In this paper, we establish some new oscillation criteria for a second-order delay dynamic equation $$u^{{\Delta}{\Delta}}(t)+p(t)u(\tau(t))=0$$ on a time scale $\mathbb{T}$. The results can be applied on differential equations when $\mathbb{T}=\mathbb{R}$, delay difference equations when $\mathbb{T}=\mathbb{N}$ and for delay $q$-difference equations when $\mathbb{T}=q^{\mathbb{N}}$ for q > 1.

  • PDF

APPROXIMATIONS OF SOLUTIONS FOR A NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT

  • CHADHA, ALKA;PANDEY, DWIJENDRA N.
    • Journal of applied mathematics & informatics
    • /
    • 제33권5_6호
    • /
    • pp.699-721
    • /
    • 2015
  • This paper investigates the existence of mild solution for a fractional integro-differential equations with a deviating argument and nonlocal initial condition in an arbitrary separable Hilbert space H via technique of approximations. We obtain an associated integral equation and then consider a sequence of approximate integral equations obtained by the projection of considered associated nonlocal fractional integral equation onto finite dimensional space. The existence and uniqueness of solutions to each approximate integral equation is obtained by virtue of the analytic semigroup theory via Banach fixed point theorem. Next we demonstrate the convergence of the solutions of the approximate integral equations to the solution of the associated integral equation. We consider the Faedo-Galerkin approximation of the solution and demonstrate some convergenceresults. An example is also given to illustrate the abstract theory.

OSCILLATION OF ONE ORDER NEUTRAL DIFFERENTIAL EQUATION WITH IMPULSES

  • Cheng, Jinfa;Chu, Yuming
    • 대한수학회논문집
    • /
    • 제26권2호
    • /
    • pp.197-205
    • /
    • 2011
  • Explicit sufficient conditions are established for the oscillation of the one order neutral differential equations with impulsive $(x(t)+{\sum\limits^n_{i=1}}c_ix(t-{\sigma}_i))'+px(t-{\tau})=0$, $t{\neq}t_{\kappa}$, ${\Delta}(x(t_{\kappa})+{\sum\limits^n_{i=1}}c_ix(t_{\kappa}-{\sigma}_i))+p_0x(t_{\kappa}-{\tau})=0$, $c_i{\geq}0$, $i=1,2,{\ldots}n$, $p{\tau}$>0, $p_0{\tau}$>0, ${\Delta}(x_{\kappa})=x(t^+_{\kappa})-x(t_{\kappa})$. Explicit sufficient and necessary condition are established when $c_i$ = 0, i = 1, 2, ${\ldots}$, n.

Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept

  • Ahouel, Mama;Houari, Mohammed Sid Ahmed;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.963-981
    • /
    • 2016
  • A nonlocal trigonometric shear deformation beam theory based on neutral surface position is developed for bending, buckling, and vibration of functionally graded (FG) nanobeams using the nonlocal differential constitutive relations of Eringen. The present model is capable of capturing both small scale effect and transverse shear deformation effects of FG nanobeams, and does not require shear correction factors. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived by employing Hamilton's principle, and the physical neutral surface concept. Analytical solutions are presented for a simply supported FG nanobeam, and the obtained results compare well with those predicted by the nonlocal Timoshenko beam theory.

Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Advances in aircraft and spacecraft science
    • /
    • 제5권6호
    • /
    • pp.691-729
    • /
    • 2018
  • In this paper the hygro-thermo-mechanical vibration and buckling behavior of embedded FG nano-plates are investigated. The Eringen's and Gurtin-Murdoch theories are applied to study the small scale and surface effects on frequencies and critical buckling loads. The effective material properties are modeled using Mori-Tanaka homogenization scheme. On the base of RPT and HSDPT plate theories, the Hamilton's principle is employed to derive governing equations. Using iterative and GDQ methods the governing equations are solved and the influence of different parameters on natural frequencies and critical buckling loads are studied.

KSTAR 중성빔 입사(NBI) 장치 배기계통 설계 (Design of the vacuum pumping system for the KSTAR NBI device)

  • 오병훈;인상렬;조용섭;김계령;최병호
    • 한국진공학회지
    • /
    • 제8권4B호
    • /
    • pp.548-555
    • /
    • 1999
  • The NBI (Neutral BGeam Injection) System for the Korea Superconducting Tokamak Advanced Research (KSTAR) is composed of ion sources, neutralizers, bending magnets, ion dumps, and calorimeter. The vacuum chamber, in which all of the beam line components are enclosed, is composed of differential pumping system for the effective transfer of the neutral beams. The needed pumping speeds of each of the divided vacuum chamber and the optimized gas flow rate ot the neutralizer were calculated with the help of the particle balance equations. The minimum gas flow rate to the ion sources for producing needed beam current (120kV, 65A, 78MW), the pressure distributions in the vacuum chamber for minimizing re-ionization loss, and the beam loss rate on the beam line components were used as the input in the calculation. Also the scenario for short pulse operation was determined by analysing the time dependent equations. It showed that beam extraction during less than 0.5 sec could be made only with TMP.

  • PDF

임의선형을 갖는 아치의 자유진동 (Free Vibration of Arbitrary Shaped Arches)

  • 이태은;신성철;이병구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.526-529
    • /
    • 2004
  • Arches are one of the most important basic structural units as well as the beams, columns and plates. Most complicated structures consist of only these basic units and therefore it is very attractive research subject to analysis both the static and dynamic behavior of such units including the arches. This study deals with the free vibration of arbitrary shaped arches. In order to obtain the exactly arch shape, which surveyed (x, y) of neutral axis of arbitrary shaped arches are compared to various shape of arch: circular, parabolic, sinusoidal, elliptic, spiral and cartenary. The differential equations governing free vibrations of arches are merely adopted in the open literature rather than deriving the equations in this study. The Taylor series method is used as the numerical differential scheme. The Runge-Kutta method and the Regula-Falsi method, respectively, are used to integrate the governing differential equations and to compute the natural frequencies It is expected that results obtained herein can be practically utilized in the fields of vibration control.

  • PDF

OSCILLATION OF HIGHER-ORDER NEUTRAL DIFFERENTIAL EQUATIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS AND MIXED ARGUMENTS

  • Sun, Yuangong;Liu, Zhi
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.199-209
    • /
    • 2013
  • In this paper, we study the oscillation problem of the following higher-order neutral differential equation with positive and negative coefficients and mixed arguments $$z^{(n)}(t)+q_1(t)|x(t-{\sigma}_1)|^{\alpha-1}x(t-{\sigma}_1)+q_2(t)|x(t-{\sigma}_2)|^{\beta-1}x(t-{\sigma}_2)=e(t)$$, where $t{\geq}t_0$, $z(t)=x(t)-p(t)x(t-{\tau})$ with $p(t)$ > 0, ${\beta}>1>{\alpha}>0$, ${\tau}$, ${\sigma}_1$ and ${\sigma}_2$ are real numbers. Without imposing any restriction on ${\tau}$, we establish several oscillation criteria for the above equation in two cases: (i) $q_1(t){\leq}0$, $q_2(t)>0$, ${\sigma}_1{\geq}0$ and ${\sigma}_2{\leq}{\tau}$; (ii) $q_1(t){\geq}0$, $q_2(t)<0$, ${\sigma}_1{\geq}{\tau}$ and ${\sigma}_2{\leq}0$. As an interesting application, our results can also be applied to the following higher-order differential equation with positive and negative coefficients and mixed arguments $$x^{(n)}(t)+q_1(t)|x(t-{\sigma}_1)|^{\alpha-1}x(t-{\sigma}_1)+q_2(t)|x(t-{\sigma}_2)|^{\beta-1}x(t-{\sigma}_2)=e(t)$$. Two numerical examples are also given to illustrate the main results.

차가운 물에 잠겨있는 수직운동 벽면주위의 자연대류에 관한 안정성 (Hydrodynamic Stability of Buoyancy-induced Flows Adjacent to a Vertical Isothermal Surface in Cold Pure Water)

  • 황영규
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.630-643
    • /
    • 1991
  • The hydrodynamic stability equations are formulated for buoyancy-induced flows adjacent to a vertical, planar, isothermal surface in cold pure water. The resulting stability equations, when reduced to ordinary differential equation by a similarity transformation, constitute a two-point boundary-value(eigenvalue) problem, which was numerically solved for various values of the density extremum parameter R=( $T_{m}$ - $T_.inf./) / ( $T_{o}$ - $T_.inf./). These stability equations have been solved using a computer code designed to accurately solve two-point boundary-value problems. The present numerical study includes neutral stability results for the region of the flows corresponding to 0.0.leq. R. leq.0.15, where the outside buoyancy force reversals arise. The results show that a small amount of outside buoyancy force reversal causes the critical Grashof number $G^*/ to increase significantly. A further increase of the outside buoyancy force reversal causes the critical Grashof number to decrease. But the dimensionless frequency parameter $B^*/ at $G^*/ is systematically decreased. When the stability results of the present work are compared to the experimental data, the numerical results agree in a qualitative way with the experimental data.erimental data.