• Title/Summary/Keyword: neurotrophic effect

Search Result 115, Processing Time 0.027 seconds

Inhibitory effect of carvacrol on lipopolysaccharide-induced memory impairment in rats

  • Lee, Bombi;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.27-37
    • /
    • 2020
  • Neuroinflammation is an important process underlying a wide variety of neurodegenerative diseases. Carvacrol (CAR) is a phenolic monoterpene commonly used as a food additive due to its antibacterial properties, but it has also been shown to exhibit strong antioxidative, anti-inflammatory, and neuroprotective effects. Here, we sought to investigate the effects of CAR on inflammation in the hippocampus and prefrontal cortex, as well as the molecular mechanisms underlying these effects. In our study, lipopolysaccharide was injected into the lateral ventricle of rats to induce memory impairment and neuroinflammation. Daily administration of CAR (25, 50, and 100 mg/kg) for 21 days improved recognition, discrimination, and memory impairments relative to untreated controls. CAR administration significantly attenuated expression of several inflammatory factors in the brain, including interleukin-1β, tumor necrosis factor-α, and cyclooxygenase-2. In addition, CAR significantly increased expression of brain-derived neurotrophic factor (BDNF) mRNA, and decreased expression of Toll-like receptor 4 (TLR4) mRNA. Taken together, these results show that CAR can improve memory impairment caused by neuroinflammation. This cognitive enhancement is due to the anti-inflammatory effects of CAR medicated by its regulation of BDNF and TLR4. Thus, CAR has significant potential as an inhibitor of memory degeneration in neurodegenerative diseases.

Effects of Rice Bran Extracts Fermented with Lactobacillus plantarum on Neuroprotection and Cognitive Improvement in a Rat Model of Ischemic Brain Injury

  • Hong, Jeong Hwa;Kim, Ji Yeong;Baek, Seung Eun;Ingkasupart, Pajaree;Park, Hwa Jin;Kang, Sung Goo
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.92-102
    • /
    • 2015
  • This work aimed to study whether rice bran extract fermented with Lactobacillus plantarum (LW) promotes functional recovery and reduces cognitive impairment after ischemic brain injury. Ischemic brain injury was induced by middle cerebral artery occlusion (MCAO) in rats. Four groups were studied, namely the (1) sham, (2) vehicle, (3) donepezil, and (4) LW groups. Animals were injected with LW once a day for 7 days after middle cerebral artery occlusion. LW group showed significantly improved neurological function as compared to the vehicle group, as well as enhanced learning and memory in the Morris water maze. The LW group showed the greatest functional recovery. Moreover, the LW group showed an enhanced more survival cells anti-apoptotic effect in the cortex and neural cell densities in the hippocampal DG and CA1. In addition, this group showed enhanced expression of neurotrophic factors, antioxidant genes, and the acetylcholine receptor gene, as well as synaptophysin (SYP), Fox-3 (NeuN), doublecortin (DCX), and choline acetyltransferase (ChAT) proteins. Our findings indicate that LW treatment showed the largest effects in functional recovery and cognitive improvement after ischemic brain injury through stimulation of the acetylcholine receptor, antioxidant genes, neurotrophic factors, and expression of NeuN, SYP, DCX, and ChAT.

Optimization of Human Embryonic Stem Cells into Differentiation of Dopaminergic Neurons in Vitro: I. Additive Effect of Neurotrophic Factor on Human Embryonic Stem Cells

  • 이금실;김은영;이영재;신현아;조황윤;이훈택;정길생;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.79-79
    • /
    • 2003
  • Embryonic stem cells are capable of differentiating into a variety of cell lineages. However, the ultimate results of differentiation in vitro greatly depend on the duration of treatment and kinds of differentiating inducers added. In order to investigate the efficiencies of various differentiation inducers and the methods of treatment, we examined differentiation patterns of human embryonic stem cell (hESC, MB03) according to several different protocols. Exp. I) Upon differentiation using retinoic acid and ascorbic acid (RA/AA), embryoid bodies (EB, for 4days) derived from hESC was exposed to Rh (10$^{-6}$ M) and AA (50 mM) for 4 days, and were allowed to differentiate in N2 medium for 7, 14, 21, or 28 days. Exp. II) When bFGF was used, neuronal precursor cells were selected for 8 days in N2 medium after EB formation. After selection, cells were expanded at the presence of bFGF (20 ng/ml) for another 6 days followed by a final differentiation in N2 medium for 7, 14, 21 or 28 days. Exp. III) In addition, to examine the effects of neurotrophic factors in the production of mature neurons, groups of cells were exposed to either BDNF (5 ng/ml) or TGF-$\alpha$(10 ng/ml) during the 28 days of final differentiation. Differentiation patterns of RA/AA or bFGF treated groups were very similar; approximately 82% and 83% of the cells, respectively, were positive for anti-NF200 antibody, while it was about 10% and 11%, respectively, for anti-NF160 antibody in 28 days in N2 medium. Alsor, cells expressing TH were as low as 5%, while the cells doubled when matured at the presence of either BDNF or TGF-$\alpha$. Cells immunoreactive to anti-GAD antibody were approximately 20%. These results suggest that a maturation step rather than differentiation induction step, which is formation of EB, effects more decisively to the ultimate differentiation pattern.

  • PDF

Alpha-Asarone, a Major Component of Acorus gramineus, Attenuates Corticosterone-Induced Anxiety-Like Behaviours via Modulating TrkB Signaling Process

  • Lee, Bombi;Sur, Bongjun;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.191-200
    • /
    • 2014
  • We investigated the anxiolytic-like activity of ${\alpha}$-asarone (AAS) from Acorus gramineus in an experimental rat model of anxiety induced by repeated administration of the exogenous stress hormone corticosterone (CORT). The putative anxiolytic effect of AAS was studied in behavioral tests of anxiety, such as the elevated plus maze (EPM) test and the hole-board test (HBT) in rats. For 21 consecutive days, male rats received 50, 100, or 200 mg/kg AAS (i.p.) 30 min prior to a daily injection of CORT. Dysregulation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Daily AAS (200 mg/kg) administration increased open-arm exploration significantly in the EPM test, and it increased the duration of head dipping activity in the HBT. It also blocked the increase in tyrosine hydroxylase (TH) expression in the locus coeruleus (LC) and decreased mRNA expression of brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, in the hippocampus. These results indicated that the administration of AAS prior to high-dose exogenous CORT significantly improved anxiety-like behaviors, which are associated with modification of the central noradrenergic system and with BDNF function in rats. The current finding may improve understanding of the neurobiological mechanisms responsible for changes in emotions induced by repeated administration of high doses of CORT or by elevated levels of hormones associated with chronic stress. Thus, AAS did exhibit an anxiolytic-like effects in animal models of anxiety.

From Gut to Brain: Alteration in Inflammation Markers in the Brain of Dextran Sodium Sulfate-induced Colitis Model Mice

  • Do, Jongho;Woo, Jungmin
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.16 no.4
    • /
    • pp.422-433
    • /
    • 2018
  • Objective: Neuropsychiatric manifestations like depression and cognitive dysfunction commonly occur in inflammatory bowel disease (IBD). In the context of the brain-gut axis model, colitis can lead to alteration of brain function in a bottom-up manner. Here, the changes in the response of the hypothalamic-pituitary-adrenal axis and inflammation-related markers in the brain in colitis were studied. Methods: Dextran sodium sulfate (DSS) was used to generate a mouse model of colitis. Mice were treated with DSS for 3 or 7 days and sacrificed. We analyzed the gene expression of brain-derived neurotrophic factor (BDNF), cyclooxygenase 2 (COX-2), and glial fibrillary acidic protein (GFAP), and the expression of GFAP, in the hippocampus, hypothalamus, and amygdala. Additionally, the levels of C-reactive protein (CRP) and serum cortisol/corticosterone were measured. Results: Alteration of inflammatory-related markers varied depending on the brain region and exposure time. In the hippocampus, COX-2 mRNA, GFAP mRNA, and GFAP expression were upregulated during exposure to DSS. However, in the hypothalamus, COX-2 mRNA was upregulated only 3 days after treatment. In the amygdala, BDNF and COX-2 mRNAs were downregulated. CRP and corticosterone expression increased with DSS treatment at day 7. Conclusion: IBD could lead to neuroinflammation in a bottom-up manner, and this effect varied according to brain region. Stress-related hormones and serum inflammatory markers, such as CRP, were upregulated from the third day of DSS treatment. Therefore, early and active intervention is required to prevent psychological and behavioral changes caused by IBD, and region-specific studies can help understand the precise mechanisms by which IBD affects the brain.

Neuroprotective Effects of Spinosin on Recovery of Learning and Memory in a Mouse Model of Alzheimer's Disease

  • Xu, Fanxing;He, Bosai;Xiao, Feng;Yan, Tingxu;Bi, Kaishun;Jia, Ying;Wang, Zhenzhong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Previous studies have shown that spinosin was implicated in the modulation of sedation and hypnosis, while its effects on learning and memory deficits were rarely reported. The aim of this study is to investigate the effects of spinosin on the improvement of cognitive impairment in model mice with Alzheimer's disease (AD) induced by $A{\beta}_{1-42}$ and determine the underlying mechanism. Spontaneous locomotion assessment and Morris water maze test were performed to investigate the impact of spinosin on behavioral activities, and the pathological changes were assayed by biochemical analyses and histological assay. After 7 days of intracerebroventricular (ICV) administration of spinosin ($100{\mu}g/kg/day$), the cognitive impairment of mice induced by $A{\beta}_{1-42}$ was significantly attenuated. Moreover, spinosin treatment effectively decreased the level of malondialdehyde (MDA) and $A{\beta}_{1-42}$ accumulation in hippocampus. $A{\beta}_{1-42}$ induced alterations in the expression of brain derived neurotrophic factor (BDNF) and B-cell lymphoma-2 (Bcl-2), as well as inflammatory response in brain were also reversed by spinosin treatment. These results indicated that the ameliorating effect of spinosin on cognitive impairment might be mediated through the regulation of oxidative stress, inflammatory process, apoptotic program and neurotrophic factor expression,suggesting that spinosin might be beneficial to treat learning and memory deficits in patients with AD via multi-targets.

Effect of EGF against Oxygen Radical-Induced Neurotoxicity in Cultured Spinal Dorsal Root Ganglion Neurons of Mouse (산소자유기에 의해 저해된 배양 척수감각 신경절 세포에 대한 상피세포성장인자의 영향)

  • Park, Seung-Taeck;Kim, Hyung-Ryong;Chae, Han-Jung
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.99-104
    • /
    • 1997
  • In order to elucidate the cytotoxic effect of oxygen radicals on cultured spinal dorsal root ganglion(DRG) neurons derived from mouse. the neurotoxic effect of oxygen radicals w as examined after cultured DRG neurons were exposed to xanthine oxidase(XO) and hypoxanthine(HX)-oxygen radical generating system. In addition. neuroprotective effect of epidermal growth factor(EGF) against oxidant-induced neurotoxicity was also evaluated in these cultures. The results were, as follows: 1. Lethal concentration 50(LC$_{50}$) was 35mU/ml XO and 0.1mM HX in cultured DRG neurons. 2. Oxygen radicals induced the morphological changes such as the decrease of cell number and loss of neurites in these cultures. 3. EGF increased the cell viability and neurofilament in neurons damaged by oxygen radicals. From above the results, it is suggested that oxygen radicals have a cytotoxic effect on cultured DRG neurons of neonatal mouse and selective neurotrophic factors such as EGF are, effective, in blocking the neurotoxicity induced by oxygen radicals in cultured spinal DRG neurons.

  • PDF

Protective Effect of Wheat Bran Extract against β-Amyloid-induced Cell Death and Memory Impairment (베타아밀로이드로 유도된 신경세포 사멸과 기억력 손상에 대한 밀기울추출물의 보호효과)

  • Lee, Chan;Park, Gyu-Hwan;Lee, Jong-Won;Jang, Jung-Hee
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.67-75
    • /
    • 2015
  • Objectives : The aim of this study is to examine the neuroprotective effect of wheat bran extract (WBE) against ${\beta}$-amyloid ($A{\beta}$)-induced apoptotic cell death in SH-SY5Y human neuroblastoma cells and memory impairment in triple transgenic animal model's of Alzheimer's disease (3xTg AD mice). Methods : In SH-SY5Y cells, MTT assay and TUNEL staining were conducted to evaluate the protective effect of WBE against $A{\beta}_{25-35}$-induced neurotoxicity and apoptosis. Alterations in mitochondrial transmembrane potential (MMP), expression of proapoptotic Bax and antiapoptotic Bcl-2 proteins, cleavage of PARP, and brain-derived neurotrophic factor (BDNF) levels were analyzed to elucidate the neuroprotective mechanism of WBE. To further investigate the memory enhancing effect of WBE, Morris water maze test was performed in 3xTg AD mice. Results : In SH-SY5Y cells, WBE protected against $A{\beta}_{25-35}$-caused cytotoxicity and apoptosis as shown by the restoration of cell viability in MTT assay and inhibition of DNA fragmentation in TUNEL staining. $A{\beta}_{25-35}$-induced apoptotic signals such as dissipation of MMP, decreased Bcl-2/Bax ratio, and cleavage of PARP were suppressed by WBE. Moreover, WBE up-regulated the protein levels of BDNF, which seemed to be mediated by activation of cAMP response element-binding protein (CREB). In 3xTg AD mice, oral administration of WBE attenuated learning and memory deficit as verified by reduced mean escape latency in water maze test. Conclusions : WBE protects neuronal cells from $A{\beta}_{25-35}$-induced apoptotic cell death and restores learning and memory impairments in 3xTg AD mice. These findings suggest that WBE exhibit neuroprotective potential for the management of AD.

The Effects of Nerve Growth Factor Expression of Central Nerve System by Environmental Enrichment and Peripheral Nerve Electrical Stimulation in Brain Ischemia Model Rats (뇌졸중 유발 백서모델에서 환경강화와 말초신경전기자극이 중추신경계의 신경성장인자에 미치는 영향)

  • Kim, Sa-Youl;Kim, Eun-Jung;Kim, Gye-Yeop
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.4
    • /
    • pp.33-41
    • /
    • 2007
  • Purpose: To investigate environmental enrichment and nerve stimulation follows in application times with the change of BDNF & Trk-B receptor in the motor cortex and spinal cord. Methods: Experimental groups were divided into the five groups. Group I: normal control group, Group II: experiment control group, Group III: sciatic never electrical stimulation after MCAO, Group IV: application of only environmental enrichment after MCAO, Group V: never electrical stimulation with environmental enrichment after MCAO. Histologic observation and coronal sections were processed individually in goat polyclonal antibody phosphorylated BDNF and rabbit polyclonal antibody Trk-B receptor. Results: In immunohistochemistric response of BDNF and Trk-B, group II were showed that lower response effect at postischemic 1 days, 3 days, and 7 days. Group V were showed that increase response effect at postischemic 3 days, 7 days and 14 days. Specially showed that the most response effect at postischemic 14 days. In neurobehavioral assessment, group V were significantly difference from other groups on between-subject effects. Conclusion: The above results suggest that combined environmental enrichment with peripheral nerve electrical stimulation in focal ischemic brain injury were more improved that the change of BDNF & Trk-B receptor expression than non treatment.

  • PDF

Brain Plasticity and Stroke Rehabilitation (뇌가소성과 뇌졸중 재활)

  • Kim, Sik-Hyun
    • PNF and Movement
    • /
    • v.6 no.2
    • /
    • pp.39-50
    • /
    • 2008
  • Purpose : This article reviewed the advances in the understanding of the effect of motor rehabilitation and brain plasticity on functional recovery after CNS damage. Methods : This is literature study with Pubmed, Medline and Science journal. Results : The inability of CNS neurons to regenerate is largely associated with nonneuronal aspects of the CNS environment. Especially, this neuronal growth inhibition is mediated by myelin associated glycoprotein, olygodendrocyte-myelin glycoprotein, and NOGO. Enriched environment, motor learning, forced limb use have been utilized in scientific studies to promote functional reorganization and brain plasticity. Especially, enriched environment and motor enrichment may prime the brain to respond more adaptively to injury, in part by expressed neurotrophic factors. Conclusions : These reviews suggest that activity-induced neural plasticity occur in damaged brain areas in order to functional reorganization, where it could contribute to motor recovery, and represent a target for stroke rehabilitation.

  • PDF