• Title/Summary/Keyword: neurons

Search Result 2,001, Processing Time 0.032 seconds

Electroacupuncture of $GB_{43}$ Modulates Neuronal Activities in Medial Vestibular Nuclei of Rats (협계(俠谿)에 대한 전침자극이 흰쥐의 내측 전정신경핵 자발활동성에 미치는 효과)

  • Kim, Jae-Hyo;Park, Byung-Rim;Sohn, In-Chul
    • Korean Journal of Acupuncture
    • /
    • v.25 no.3
    • /
    • pp.117-135
    • /
    • 2008
  • Objectives: It is known that the vestibular imbalance leads to vestibular symptoms such as nausea, vomiting, vertigo and postural disturbance. Since the non-labyrinthine inputs from the limbs and viscera converge on the vestibular nucleus neurons receiving signal from peripheral vestibular endorgan, acupuncture to the periphery may influence the activities of vestibular nuclear neurons and produce a therapeutic effect on the vestibulacr symptoms. The present study was to examine a modification and characteristics of the static and dynamic activities of medial vestibular nucleus (MVN) neurons following electroacupuncture (EA) of GB43' acupoint. Methods: In 54 Sprague-Dawley adult male rats weighing 250${\sim}$300g, spontaneous firing discharges and dynamic responses induced by sinusoidal whole body rotation about vertical axis at 0.2 Hz were observed in MVN of rats during EA of GB43' acupoint, located between the left 4th and 5th toe, which is the territory of sural and peroneal nerves, with 0.2 ms, 40 Hz and 600${\pm}$200 ${\mu}A$. Results: EA of the left GB43' acupoint induced modifications of spontaneous firing rates in 45% of MVN neurons recorded, and the percentage of modified neurons was 44% in type I, 52% in type II and 46% in non-type neurons. The excitatory or inhibitory responses of spontaneous firing discharges were predominant in the ipsilateral MVN neurons during EA. The excitatory response was abolished after EA but the inhibitory response was prolonged after EA in the ipsilateral MVN. The neurons of MVN showing modified spontaneous firing discharges by EA showed lower frequency (${\geq}$10 spikes/sec) of mean spontaneous firing rates than non affected ones. Conclusion: These results suggest that the neuronal activities of MVN neurons were influenced by EA of GB43' acupoint and the effects of EA may be related to the convergence of the peripheral vestibular inputs and ascending somatosensory inputs on MVN.

  • PDF

Electrical properties and ATP-sensitive K+ channel density of the rat substantia nigra pars compacta neurons (랫드 흑질 신경세포의 전기적 특성과 ATP-sensitive K+채널의 전류밀도)

  • Han, Seong-kyu;Park, Jin-bong;Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.275-282
    • /
    • 2000
  • Substantia nigra is known to highly express glibenclamide binding site, a protein associated to ATP-sensitive $K^{+}$ ($K_{ATP}$) channel in the brain. However, the functional expression of $K_{ATP}$ channels in the area is not yet known. In this work, we attempted to estimate the functional expression of $K_{ATP}$ channels in neurons of the substantia nigra pars compacta (SNC) in young rats using slice patch clamp technique. Membrane properties and whole cell currents attributable to $K_{ATP}$ channel were examined by the current and voltage clamp method, respectively. In SNC, two sub-populations of neurons were identified. Type I (rhythmic) neurons had low frequency rebound action potentials ($4.5{\pm}0.25Hz$, n=75) with rhythmic pattern. Type II (phasic) neurons were characterized by faster firing ($22.7{\pm}3.16Hz$, n=12). Both time constants and membrane capacitance in rhythmic neurons ($34.0{\pm}1.27$ ms, $270.0{\pm}11.83$ pF) and phasic neurons ($23.7{\pm}4.16$ ms, $184{\pm}35.2$ pF) were also significantly different. The current density of $K_{ATP}$ channels was $6.1{\pm}1.47$ pA/pF (2.44~15.43 pA/pF, n=8) at rhythmic neurons of young rats. Our data show that in SNC there are two types of neurons with different electrical properties and the density of $K_{ATP}$, channel of rhythmic neuron is about 600 channels per neuron.

  • PDF

Immunocytochemical Localization of Nitric Oxide Synthase-containing Neurons in Mouse and Rabbit Visual Cortex and Co-Localization with Calcium-binding Proteins

  • Lee, Jee-Eun;Jeon, Chang-Jin
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.408-417
    • /
    • 2005
  • Nitric oxide (NO) occurs in various types of cells in the central nervous system. We studied the distribution and morphology of neuronal nitric oxide synthase (NOS)-containing neurons in the visual cortex of mouse and rabbit with antibody immunocytochemistry. We also compared this labeling to that of calbindin D28K, calretinin, and parvalbumin. Staining for NOS was seen both in the specific layers and in selective cell types. The densest concentration of intense anti-NOS immunoreactive (IR) neurons was found in layer VI, while the weak anti-NOS-IR neurons were found in layer II/III in both animals. The NOS-IR neurons varied in morphology. The large majority of NOS-IR neurons were round or oval cells with many dendrites coursing in all directions. Two-color immunofluorescence revealed that only 16.7% of the NOS-IR cells were double-labeled with calbindin D28K in the mouse visual cortex, while more than half (51.7%) of the NOS-IR cells were double-labeled with calretinin and 25.0% of the NOS-IR cells were double-labeled with parvalbumin in mouse. By contrast, 92.4% of the NOS-IR neurons expressed calbindin D28K while only 2.5% of the NOS-IR neurons expressed calretinin in the rabbit visual cortex. In contrast with the mouse, none of the NOS-IR cells in the rabbit visual cortex were double-labeled with parvalbumin. The results indicate that neurons in the visual cortex of both animals express NOS in specific layers and cell types, which do not correlate with the expression of calbindin D28K, calretinin or parvalbumin between the two animals.

Direct Corticosteroid Modulation of GABAergic Neurons in the Anterior Hypothalamic Area of GAD65-eGFP Mice

  • Shin, Seung-Yub;Han, Tae-Hee;Lee, So-Yeong;Han, Seong-Kyu;Park, Jin-Bong;Erdelyi, Ferenc;Szabo, Gabor;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.163-169
    • /
    • 2011
  • Corticosterone is known to modulate GABAergic synaptic transmission in the hypothalamic paraventricular nucleus. However, the underlying receptor mechanisms are largely unknown. In the anterior hypothalamic area (AHA), the sympathoinhibitory center that project GABAergic neurons onto the PVN, we examined the expression of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) of GABAergic neurons using intact GAD65-eGFP transgenic mice, and the effects of corticosterone on the burst firing using adrenalectomized transgenic mice. GR or MR immunoreactivity was detected from the subpopulations of GABAergic neurons in the AHA. The AHA GABAergic neurons expressed mRNA of GR (42%), MR (38%) or both (8%). In addition, in brain slices incubated with corticosterone together with RU486 (MR-dominant group), the proportion of neurons showing a burst firing pattern was significantly higher than those in the slices incubated with vehicle, corticosterone, or corticosterone with spironolactone (GR-dominant group; 64 vs. 11~14%, p<0.01 by $x^2$-test). Taken together, the results show that the corticosteroid receptors are expressed on the GABAergic neurons in the AHA, and can mediate the corticosteroid-induced plasticity in the firing pattern of these neurons. This study newly provides the experimental evidence for the direct glucocorticoid modulation of GABAergic neurons in the AHA in the vicinity of the PVN.

Physiological Fuzzy Neural Networks for Image Recognition (영상 인식을 위한 생리학적 퍼지 신경망)

  • Kim, Kwang-Baek;Moon, Yong-Eun;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.81-103
    • /
    • 2005
  • The Neuron structure in a nervous system consists of inhibitory neurons and excitory neurons. Both neurons are activated by agonistic neurons and inactivated by antagonist neurons. In this paper, we proposed a physiological fuzzy neural network by analyzing the physiological neuron structure in the nervous system. The proposed structure selectively activates the neurons which go through a state of excitement caused by agonistic neurons and also transmit the signal of these neurons to the output layers. The proposed physiological fuzzy neural networks based on the nervous system consists of a input player, and the hidden layer which classifies features of learning data, and output layer. The proposed fuzzy neural network is applied to recognize bronchial squamous cell carcinoma images and car plate images. The result of the experiments shows that the learning time, the convergence, and the recognition rate of the proposed physiological fuzzy neural networks outperform the conventional neural networks.

  • PDF

Studies of the Central Neural Pathways to the Hapgok(LI4) and Large Intestine (합곡과 대장의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.217-226
    • /
    • 2011
  • The aim of this study is to identify central neural pathway of neurons following the projection to the large intestine and Hapgok(LI4) which is Won acupoint of the large intestine meridian of hand-yangmyeong. In this experiment, Bartha's strain of pseudorabies virus was used to trace central localization of neurons related with large intestine and acupoint(LI4) which has been known to be able to regulate intestinal function. The animals were divided into 3 groups: group 1, injected into the large intestine; group 2, injected into the acupoint(LI4); group 3, injected into the acupoint(LI4) after severing the radial, ulnar, median nerve. After four days survival of rats, PRV labeled neurons were identified in the spinal cord and brain by immunohistochemical method. First-order PRV labeled neurons following the projection to large intestine, acupoint(LI4) and acupoint(LI4) after cutting nerve were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in lamina V- X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the arcuate nucleus and median eminence. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of large intestine-related organs and it was revealed by tracing PRV labeled neurons projecting large intestine and related acupoint(LI4).

Ganglion cardiacum or juxtaductal body of human fetuses

  • Kim, Ji Hyun;Cho, Kwang Ho;Jin, Zhe Wu;Murakami, Gen;Abe, Hiroshi;Chai, Ok Hee
    • Anatomy and Cell Biology
    • /
    • v.51 no.4
    • /
    • pp.266-273
    • /
    • 2018
  • The ganglion cardiacum or juxtaductal body is situated along the left recurrent laryngeal nerve in the aortic window and is an extremely large component of the cardiac nerve plexus. This study was performed to describe the morphologies of the ganglion cardiacum or juxtaductal body in human fetuses and to compare characteristics with intracardiac ganglion. Ganglia were immunostained in specimens from five fetuses of gestational age 12-16 weeks and seven fetuses of gestational age 28-34 weeks. Many ganglion cells in the ganglia were positive for tyrosine hydroxylase (TH; sympathetic nerve marker) and chromogranin A, while a few neurons were positive for neuronal nitric oxide synthase (NOS; parasympathetic nerve marker) or calretinin. Another ganglion at the base of the ascending aorta carried almost the same neuronal populations, whereas a ganglion along the left common cardinal vein contained neurons positive for chromogranin A and NOS but no or few TH-positive neurons, suggesting a site-dependent difference in composite neurons. Mixtures of sympathetic and parasympathetic neurons within a single ganglion are consistent with the morphology of the cranial base and pelvic ganglia. Most of the intracardiac neurons are likely to have a non-adrenergic non-cholinergic phenotype, whereas fewer neurons have a dual cholinergic/noradrenergic phenotype. However, there was no evidence showing that chromogranin A- and/or calretinin-positive cardiac neurons corresponded to these specific phenotypes. The present study suggested that the ganglion cardiacum was composed of a mixture of sympathetic and parasympathetic neurons, which were characterized the site-dependent differences in and near the heart.

Electrophysiological Analysis of GABA and Glycine Action on Neurons of the Catfish Retina

  • Bai, Sun-Ho;Jung, Chang-Sub;Lee, Sung-Jong
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.163-174
    • /
    • 1993
  • Vertebrate retinal neurons, like brain tracts farm complex synaptic relations in the enter and inner plexiform layers which ape equivalent to the central nervous system nuclei. The effects of $\gamma-aminobutyric$ acid(GABA) and glycine on retinal neurons were explored to discern the mechanisms of action of neurotransmitters. Experiments were performed in the superfused retina-eyecup preparation of the channel catfish, Ictalurus punctatus, using intracellular electrophysiological techniques. The roles of GABA and glycine as inhibitory neurotransmitters are well established in the vertebrate retina. But, we found that the depolarizing action of GABA and glycine on third-order neurons in the catfish retina. GABA and glycine appeared to act on retinal ueurons based on the observations that (1) effects on photoreceptors were not observed, (2) horizontal cells were either hyperpolarized $({\sim}33%)$ or depolarized $({\sim}67%)$, (3) bipolar cells were all hyperpolarized (4) amacrine and ganglion cells were either hyperpolarized $({\sim}37%)$ or depolarized $({\sim}63%)$, (5) GABA and glycine may be working to suppress presynaptic inhibition. The results suggest that depolarization of third-order neurons by GABA and glycine is due to at least two mechanisms; a direct postsynaptic effect and an indirect effect. Therefore, in the catfish retina, a mechanism of presynaptic inhibition or disinhibition including the direct postsynaptic effect may exist in the third-order neurons.

  • PDF

Inhibitory Effects of EGCG on the Dopaminergic Neurons

  • Heo, Tag;Jang, Su-Jeong;Kim, Song-Hee;Jeong, Han-Seong;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2009
  • This study was designed to investigate the effects of high concentration of (-)-epigallocatechin-3-gallate(EGCG) on the neuronal activity of rat substantia nigra dopaminergic neurons. Sprague-Dawley rats aged 14 to 16 days were decapitated under ether anesthesia. After treatment with pronase and thermolysin, the dissociated dopaminergic neurons were transferred into a chamber on an inverted microscope. Spontaneous action potentials and potassium currents were recorded by standard patch-clamp techniques under current and voltage-clamp modes respectively. 18 dopaminergic neurons(80%) revealed inhibitory responses to 40 and 100 ${\mu}M$ of EGCG and 4 neurons(20%) did not respond to EGCG. The spike frequency and resting membrane potential of these cells were decreased by EGCG. The amplitude of afterhyperpolarization was increased by EGCG. Whole potassium currents of dopaminergic neurons were increased by EGCG(n=10). These experimental results suggest that high concentration EGCG decreases the neuronal activity of the dopaminergic neurons by altering the resting membrane potential and afterhyperpolarization.

  • PDF

Modulation of Corydalis tuber on Glycine-induced Ion Current in Acutely Dissociated Rat Periaqueductal Gray Neuron

  • Cheong, Byung-Shik;Nam, Sang-Soo;Choi, Do-Young
    • The Journal of Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.34-42
    • /
    • 2003
  • This study was designed to investigate the modulation of the Corydalis tuber on glycine-activated ion current in rat periaqueductal gray (PAG) neurons. Aqueous extract from Corydalis tuber has been widely used for pain control such as dysmenorrhea, irregular menstruation or amenorrhea with abdominal cramping, neuralgia, headache and gastrointestinal spasm. The PAG region of the brain is known to be involved heavily with nociception. Modulation of the Corydalis tuber on glycine-induced ion current in rat periaqueductal gray (PAG) neurons was studied by a nystatin-perforated patch-clamp technique. High concentrations of Corydalis tuber elicited ion current, which was suppressed by strychnine application. Low concentrations of Corydalis tuber reduced glycine-induced ion currents in the PAG neurons. Inhibitory action of Corydalis tuber on glycine-activated ion current was reduced by treatment with naltrexone, a non- selective opioid antagonist. Application of N-methylmalemide (NEM), a sulfhydryl alkylating agent, also reduced the inhibitory action of Corydalis tuber on glycine-activated ion current in the PAG neurons. These results suggest that the inhibitory effect of Corydalis tuber on glycine-activated ion current in the PAG neurons is one of the analgesic mechanisms of the Corydalis tuber, which may activate descending pain control system in PAG neurons.

  • PDF