• 제목/요약/키워드: neuronal cells (SH-SY5Y)

검색결과 79건 처리시간 0.022초

Identification of Genes Associated with Early and Late Response of Methylmercury in Human Neuroblastoma Cell Line

  • Kim, Youn-Jung;Kim, Mi-Soon;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.164-169
    • /
    • 2008
  • Methylmercury (MeHg) is known to have devastating effects on the mammalian nervous system. In order to characterize the mechanism of MeHg-induced neurotoxicity, we investigated the analysis of transcriptional profiles on human 8k cDNA microarray by treatment of $1.4{\mu}M$ MeHg at 3, 12, 24 and 48h in human neuroblastoma SH-SY5Y cell line. Some of the identified genes by MeHg treatment were significant at early time points (3h), while that of others was at late time points (48h). The early response genes that may represent those involved directly in the MeHg response included pantothenate kinase 3, a kinase (PRKA) anchor protein (yotiao) 9, neurotrophic tyrosine kinase, receptor, type 2 gene, associated with NMDA receptor activity regulation or perturbations of central nervous system homeostasis. Also, when SH-SY5Y cells were subjected to a longer exposure (48h), a relative increase was noted in a gene, glutamine-fructose-6-phosphate transaminase 1, reported that overexpression of this gene may lead to the increased resistance to MeHg. To confirm the alteration of these genes in cultured neurons, we then applied real time-RT PCR with SYBR green. Thus, this result suggests that a neurotoxic effect of the MeHg might be ascribed that MeHg alters neuronal receptor regulation or homeostasis of neuronal cells in the early phase. However, in the late phase, it protects cells from neurotoxic effects of MeHg.

베타아밀로이드로 유도된 신경세포 사멸과 기억력 손상에 대한 밀기울추출물의 보호효과 (Protective Effect of Wheat Bran Extract against β-Amyloid-induced Cell Death and Memory Impairment)

  • 이찬;박규환;이종원;장정희
    • 대한본초학회지
    • /
    • 제30권1호
    • /
    • pp.67-75
    • /
    • 2015
  • Objectives : The aim of this study is to examine the neuroprotective effect of wheat bran extract (WBE) against ${\beta}$-amyloid ($A{\beta}$)-induced apoptotic cell death in SH-SY5Y human neuroblastoma cells and memory impairment in triple transgenic animal model's of Alzheimer's disease (3xTg AD mice). Methods : In SH-SY5Y cells, MTT assay and TUNEL staining were conducted to evaluate the protective effect of WBE against $A{\beta}_{25-35}$-induced neurotoxicity and apoptosis. Alterations in mitochondrial transmembrane potential (MMP), expression of proapoptotic Bax and antiapoptotic Bcl-2 proteins, cleavage of PARP, and brain-derived neurotrophic factor (BDNF) levels were analyzed to elucidate the neuroprotective mechanism of WBE. To further investigate the memory enhancing effect of WBE, Morris water maze test was performed in 3xTg AD mice. Results : In SH-SY5Y cells, WBE protected against $A{\beta}_{25-35}$-caused cytotoxicity and apoptosis as shown by the restoration of cell viability in MTT assay and inhibition of DNA fragmentation in TUNEL staining. $A{\beta}_{25-35}$-induced apoptotic signals such as dissipation of MMP, decreased Bcl-2/Bax ratio, and cleavage of PARP were suppressed by WBE. Moreover, WBE up-regulated the protein levels of BDNF, which seemed to be mediated by activation of cAMP response element-binding protein (CREB). In 3xTg AD mice, oral administration of WBE attenuated learning and memory deficit as verified by reduced mean escape latency in water maze test. Conclusions : WBE protects neuronal cells from $A{\beta}_{25-35}$-induced apoptotic cell death and restores learning and memory impairments in 3xTg AD mice. These findings suggest that WBE exhibit neuroprotective potential for the management of AD.

Neuroprotective Effects of Phlorotannin-Rich Extract from Brown Seaweed Ecklonia cava on Neuronal PC-12 and SH-SY5Y Cells with Oxidative Stress

  • Nho, Jin Ah;Shin, Yong Sub;Jeong, Ha-Ram;Cho, Suengmok;Heo, Ho Jin;Kim, Gun Hee;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권3호
    • /
    • pp.359-367
    • /
    • 2020
  • Neurodegenerative disorders in the elderly are characterized by gradual loss of memory and cognitive function. Oxidative stress caused by reactive oxygen species is associated with progressive neuronal cell damage and death in Alzheimer's disease, one of the most common neurodegenerative disorders. An edible brown seaweed, Ecklonia cava, contains a variety of biologically active compounds such as phlorotannins. In this study, we comparatively evaluated the total phenolic content, antioxidant capacity, and neuroprotective effects of the phlorotannin-rich extract from E. cava (PEEC). The total phenolic content of PEEC and dieckol was 810.8 mg gallic acid equivalents (GAE)/g and 996.6 mg GAE/g, respectively. Antioxidant capacity of PEEC was 1,233.8 mg vitamin C equivalents (VCE)/g and 392.1 mg VCE/g determined using ABTS and DPPH assays, respectively, while those of dieckol were 2,238.4 mg VCE/g and 817.7 mg VCE/g. High-performance liquid chromatography results revealed 48.08 ± 0.67 mg dieckol/g of PEEC. PEEC had neuroprotective effects in pheochromocytoma (PC-12) and human neuroblastoma (SH-SY5Y) cells against H2O2- and AAPH-induced oxidative damage, partly due to reduced intracellular oxidative stress. PEEC treatment inhibited acetylcholinesterase and butyrylcholinesterase in a dose-dependent manner. Taken together, these findings suggest that PEEC is a good source of antioxidants and neuroprotective materials.

Preventive effects of crocin on neuronal damages induced by D-galactose through AGEs and oxidative stress in human neuroblastoma cells (SH-SY5Y)

  • Heidari, Somaye;Mehri, Soghra;Shariaty, Vahidesadat;Hosseinzadeh, Hossein
    • 대한약침학회지
    • /
    • 제21권1호
    • /
    • pp.18-25
    • /
    • 2018
  • Objective: D-galactose (D-gal) is well-known agent to induce aging process. In the present study, we selected crocin, the main constituent of Crocus sativus L. (saffron), against D-gal- induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Methods: Pretreated cells with crocin ($25-500{\mu}M$, 24 h) were exposed to D-gal (25-400 mM, 48 h). The MTT assay was used for determination cell viability. Dichlorofluorescin diacetate assay (DCF-DA) and senescence associated ${\beta}$-galactosidase staining assay (SA-${\beta}$-gal) were used to evaluate the generation of reactive oxygen species and beta-galactosidase as an aging marker, respectively. Also advanced glycation end products (AGEs) expression which is known as the main mechanism of age-related diseases was measured by western blot analysis. Results: The findings of our study showed that treatment of cells with D-gal (25-400 mM) for 48h decreased cell viability concentration dependency. Reactive oxygen species (ROS) levels which are known as main factors in age-related diseases increased from $100{\pm}8%$ in control group to $132{\pm}22%$ in D-gal (200 mM) treated cells for 48h. The cytotoxic effects of D-gal decreased with 24h crocin pretreatment of cells. The cell viability at concentrations of $100{\mu}M$, $200{\mu}M$ and $500{\mu}M$ increased and ROS production decreased at concentrations of 200 and $500{\mu}M$ to $111.5{\pm}6%$ and $108{\pm}5%$, respectively. Also lysosomal biomarker of aging and carboxymethyl lysine (CML) expression as an AGE protein, significantly increased in D-gal 200 mM group after 48h incubation compare to control group. Pre-treatment of SHSY-5Y cells with crocin ($500{\mu}M$) before adding D-gal significantly reduced aging marker and CML formation. Conclusion: Treatment of SH-SY5Y cells with crocin before adding of D-gal restored aging effects of D-gal concentration dependency. These findings indicate that crocin has potent anti- aging effects through inhibition of AGEs and ROS production.

산소-포도당 결핍(OGD) 유도성 신경세포 사멸에 대한 뇌 보호 효과를 가지는 수종 생약추출물의 검색 (Neuroprotective Effects of Some Plant Extracts against Oxygen-Glucose Deprivation (OGD)-Induced Oxidative Cell Death on Neuronal Cell)

  • 이학주;구억;이현정;이동호;마웅천
    • 한국약용작물학회지
    • /
    • 제17권5호
    • /
    • pp.341-345
    • /
    • 2009
  • Cerebral ischemia results from a transient or permanent reduction in cerebral blood flow that decreases oxygen and glucose supply. When the cellular oxygen supply is reduced to critical level, damage to cells and induction of cell death are occurred by excitotoxicity, oxidative stress and inflammation. Ischemia remains one of the leading causes of death, but there is no effective treatment that might protect neurons gainst ischemia by interrupting the cascade of cell death. In this study, human neuroblastoma SH-SY5Y cells are exposed to oxygen and glucose deprivation (OGD) followed by reoxgenation. OGD can mimic the acute restriction of metabolite and oxygen supply caused by ischemia and is widely used as a model of ischemic conditions. SH-SY5Y cells are treated samples at the commencement of OGD to achieve different final concentrations, and cell viabilities were quantified using the measurement of flow cytometry analysis. Of those tested, the extracts of Polygala tenuifolia (roots), Dictamnus dasycarpus (barks), Polygala tenuifolia (roots), Eucommia ulmoides (branches), Eucommia ulmoides (barks), Poria cocos (whole), Sophora flavescens (roots) showed neuroprotective effects, with $EC_{50}$ values of $4.5{\pm}0.6$, $7.9{\pm}1.5$, $10.5{\pm}0.7$, $18.4{\pm}1.9$, $19.6{\pm}0.3$, $21.6{\pm}1.9$, and $30.7{\pm}3.9{\mu}g/m{\ell}$, respectively.

Protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride on hypoxia-induced β-amyloid production in SH-SY5Y cells

  • Han, A Reum;Yang, Ji Woong;Na, Jung-Min;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.439-444
    • /
    • 2019
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer's disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced ${\beta}$-amyloid ($A{\beta}$) generation and development of AD is not yet known. We have now investigated the protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride (KHG26702), a novel thiazole derivative, on oxygen-glucose deprivation (OGD)-reoxygenation (OGD-R)-induced $A{\beta}$ production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with KHG26702 significantly attenuated OGD-R-induced production of reactive oxygen species and elevation of levels of malondialdehyde, prostaglandin $E_2$, interleukin 6 and glutathione, as well as superoxide dismutase activity. KHG26702 also reduced OGD-R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, KHG26702 reduced OGD-R-induced $A{\beta}$ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that KHG26702 may prevent neuronal cell damage from OGD-R-induced toxicity.

시금치 추출물에 의한 뇌세포 사멸 보호 효과 (Spinacia oleracea Extract Protects against Chemical-Induced Neuronal Cell Death)

  • 박자영;허진철;우상욱;신흥묵;권택규;이진만;정신교;이상한
    • 한국식품저장유통학회지
    • /
    • 제14권4호
    • /
    • pp.425-430
    • /
    • 2007
  • Amyloid ${\beta}-peptide$에 의해 유도되는 세포사멸을 보호하는 물질을 검색하기 위하여 250여 식물 재료 및 식품성분으로부터 스크리닝한 결과 가장 효과가 있는 시금치 추출물을 이용하여 뇌신경세포사멸(neuronal cell death)을 어느 정도 보호할 수 있는지를 알아보았다. 시금치 추출물이 항산화 활성과 acetylcholinesterase 활성에 대한 저해효과는 시금치 추출물 처리농도가 높을수록 유의적으로 높게 나타났다. 과산화수소와 amyloid ${\beta}-peptide$에 의해 유도된 SH-SY5Y 세포주의 세포사멸에 대한 시금치추출액의 억제효과를 살펴본 결과, 과산화수소에 의한 세포사멸에 대하여 시금치 추출물은 억제효과를 나타내었으나, amyloid ${\beta}-peptide$의 경우는 세포사멸억제효과를 나타내지 않았다.

화학적 저산소증이 유도하는 뇌신경세포 손상에 있어서 미성숙 진귤 과피 발효 추출물의 보호 효과 (Anti-apoptotic effect of fermented Citrus sunki peel extract on chemical hypoxia-induced neuronal injury)

  • 고운철;이선령
    • Journal of Nutrition and Health
    • /
    • 제48권5호
    • /
    • pp.451-456
    • /
    • 2015
  • Purpose: Neuronal apoptotic events induced by aging and hypoxic/ischemic conditions is an important risk factor in neurodegenerative diseases such as ischemia stroke and Alzheimer's disease. The peel of Citrus sunki Hort. ex Tanaka has long been used as a traditional medicine, based on multiple biological activities including anti-oxidant, anti-inflammation, and anti-obesity. In the current study, we examined the actions of fermented C. sunki peel extract against cobalt chloride ($CoCl_2$)-mediated hypoxic death in human neuroblastoma SH-SY5Y cells. Methods: Cell viability was measured by trypan blue exclusion. Expression of apoptosis related proteins and release of cytochrome c were detected by western blot. Production of intracellular reactive oxygen species (ROS) and apoptotic morphology were examined using 2',7'-dichlorofluorescin diacetate (DCF-DA) and 4',6-diamidino-2-phenylindole (DAPI) staining. Results: Exposure to $CoCl_2$, a well-known mimetic agent of hypoxic/ischemic condition, resulted in neuronal cell death via caspase-3 dependent pathway. Extract of fermented C. sunki peel significantly rescued the $CoCl_2$-induced neuronal toxicity with the cell viability and appearance of apoptotic morphology. Cytoprotection with fermented C. sunki peel extract was associated with a decrease in activities of caspase-3 and cleavage of poly (ADP ribose) polymerase (PARP). In addition, increase in the intracellular ROS and release of cytochrome c from mitochondria to the cytosol were inhibited by treatment with extract of fermented C. sunki peel. Conclusion: Based on these data, fermented C. sunki peel extract might have a protective effect against $CoCl_2$-induced neuronal injury partly through generation of ROS and effectors involved in mitochondrial mediated apoptosis.

Neuroprotective Effect of Chebulagic Acid via Autophagy Induction in SH-SY5Y Cells

  • Kim, Hee Ju;Kim, Joonki;Kang, Ki Sung;Lee, Keun Taik;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.275-281
    • /
    • 2014
  • Autophagy is a series of catabolic process mediating the bulk degradation of intracellular proteins and organelles through formation of a double-membrane vesicle, known as an autophagosome, and fusing with lysosome. Autophagy plays an important role of death-survival decisions in neuronal cells, which may influence to several neurodegenerative disorders including Parkinson's disease. Chebulagic acid, the major constituent of Terminalia chebula and Phyllanthus emblica, is a benzopyran tannin compound with various kinds of beneficial effects. This study was performed to investigate the autophagy enhancing effect of chebulagic acid on human neuroblastoma SH-SY5Y cell lines. We determined the effect of chebulagic acid on expression levels of autophagosome marker proteins such as, DOR/TP53INP2, Golgi-associated ATPase Enhancer of 16 kDa (GATE 16) and Light chain 3 II (LC3 II), as well as those of its upstream pathway proteins, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and Beclin-1. All of those proteins were modulated by chebulagic acid treatment in a way of enhancing the autophagy. Additionally in our study, chebulagic acid also showed a protective effect against 1-methyl-4-phenylpyridinium ($MPP^+$) - induced cytotoxicity which mimics the pathological symptom of Parkinson's disease. This effect seems partially mediated by enhanced autophagy which increased the degradation of aggregated or misfolded proteins from cells. This study suggests that chebulagic acid is an attractive candidate as an autophagy-enhancing agent and therefore, it may provide a promising strategy to prevent or cure the diseases caused by accumulation of abnormal proteins including Parkinson's disease.

Effects of Corticosterone on Beta-Amyloid-Induced Cell Death in SH-SY5Y Cells

  • Bo Kyeong Do;Jung-Hee Jang;Gyu Hwan Park
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.77-83
    • /
    • 2024
  • Alzheimer's disease (AD) is a neurodegenerative disease characterized by neuronal cell death and memory impairment. Corticosterone (CORT) is a glucocorticoid hormone produced by the hypothalamic-pituitary-adrenal axis in response to a stressful condition. Excessive stress and high CORT levels are known to cause neurotoxicity and aggravate various diseases, whereas mild stress and low CORT levels exert beneficial actions under pathophysiological conditions. However, the effects of mild stress on AD have not been clearly elucidated yet. In this study, the effects of low (3 and 30 nM) CORT concentration on Aβ25-35-induced neurotoxicity in SH-SY5Y cells and underlying molecular mechanisms have been investigated. Cytotoxicity caused by Aβ25-35 was significantly inhibited by the low concentration of CORT treatment in the cells. Furthermore, CORT pretreatment significantly reduced Aβ25-35-mediated pro-apoptotic signals, such as increased Bim/Bcl-2 ratio and caspase-3 cleavage. Moreover, low concentration of CORT treatment inhibited the Aβ25-35-induced cyclooxygenase-2 and pro-inflammatory cytokine expressions, including tumor necrosis factor-α and interleukin-1β. Aβ25-35 resulted in intracellular accumulation of reactive oxygen species and lipid peroxidation, which were effectively reduced by the low CORT concentration. As a molecular mechanism, low CORT concentration activated the nuclear factor-erythroid 2-related factor 2, a redox-sensitive transcription factor mediating cellular defense and upregulating the expression of antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase, glutamylcysteine synthetase, and manganese superoxide dismutase. These findings suggest that low CORT concentration exerts protective actions against Aβ25-35-induced neurotoxicity and might be used to treat and/or prevent AD.