• Title/Summary/Keyword: neuroinflammation

Search Result 145, Processing Time 0.026 seconds

Network pharmacology-based prediction of efficacy and mechanism of Chongmyunggongjin-dan acting on Alzheimer's disease (네트워크 약리학을 기반으로한 총명공진단(聰明供辰丹) 구성성분과 알츠하이머 타겟 유전자의 효능 및 작용기전 예측)

  • Bitna Kweon;Sumin Ryu;Dong-Uk Kim;Jin-Young Oh;Mi-Kyung Jang;Sung-Joo Park;Gi-Sang Bae
    • The Journal of Korean Medicine
    • /
    • v.44 no.2
    • /
    • pp.106-118
    • /
    • 2023
  • Objectives: Network pharmacology is a method of constructing and analyzing a drug-compound-target network to predict potential efficacy and mechanisms related to drug targets. In that large-scale analysis can be performed in a short time, it is considered a suitable tool to explore the function and role of herbal medicine. Thus, we investigated the potential functions and pathways of Chongmyunggongjin-dan (CMGJD) on Alzheimer's disease (AD) via network pharmacology analysis. Methods: Using public databases and PubChem database, compounds of CMGJD and their target genes were collected. The putative target genes of CMGJD and known target genes of AD were compared and found the correlation. Then, the network was constructed using Cytoscape 3.9.1. and functional enrichment analysis was conducted based on the Gene Ontology (GO) Biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways to predict the mechanisms. Results: The result showed that total 104 compounds and 1157 related genes were gathered from CMGJD. The network consisted of 1157nodes and 10034 edges. 859 genes were interacted with AD gene set, suggesting that the effects of CMGJD are closely related to AD. Target genes of CMGJD are considerably associated with various pathways including 'Positive regulation of chemokine production', 'Cellular response to toxic substance', 'Arachidonic acid metabolic process', 'PI3K-Akt signaling pathway', 'Metabolic pathways', 'IL-17 signaling pathway' and 'Neuroactive ligand-receptor interaction'. Conclusion: Through a network pharmacological method, CMGJD was predicted to have high relevance with AD by regulating inflammation. This study could be used as a basis for effects of CMGJD on AD.

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.

Prospero Homeobox 1 and Doublecortin Correlate with Neural Damage after Ischemic Stroke

  • Dong-Hun Lee;Eun Chae Lee;Sang-Won Park;Ji young Lee;Kee-Pyo Kim;Jae Sang Oh
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.3
    • /
    • pp.333-344
    • /
    • 2024
  • Objective : Markers of neuroinflammation during ischemic stroke are well characterized, but additional markers of neural damage are lacking. The study identified associations of behavioral disorders after stroke with histologic neural damage and molecular biological change. Methods : Eight-week-old, 25 g male mice of the C57BL/6J strain were subjected to middle cerebral artery occlusion (MCAO) to induce ischemic stroke. The control group was a healthy wild type (WT), and the experimental group were designed as a low severity MCAO1 and a high severity MCAO2 based on post-stroke neurological scoring. All groups underwent behavioral tests, realtime polymerase chain reaction, triphenyltetrazolium chloride (TTC) staining and Hematoxylin and Eosin staining. One-way analysis of variance was used to analyze statistical significance between groups. Results : In TTC staining, MCAO1 showed 29.02% and MCAO2 showed 38.94% infarct volume (p<0.0001). The pro-inflammatory cytokine interleukin (IL)-1β was most highly expressed in MCAO2 (WT 0.44 vs. MCAO1 2.69 vs. MCAO2 5.02, p<0.0001). From the distance to target in the Barnes maze test, WT had a distance of 178 cm, MCAO1 had a distance of 276 cm, and MCAO2 had a distance of 1051 (p=0.0015). The latency to target was 13.3 seconds for WT, 27.9 seconds for MCAO1, and 87.9 seconds for MCAO2 (p=0.0007). Prospero homeobox 1 (Prox1) was most highly expressed in MCAO2 (p=0.0004). Doublecortin (Dcx) was most highly expressed in MCAO2 (p<0.0001). Conclusion : The study demonstrated that histological damage to neural cells and changes in brain mRNA expression were associated with behavioral impairment after ischemic stroke. Prox1 and Dcx may be biomarkers of neural damage associated with long-term cognitive decline, and increased expression at the mRNA level was consistent with neural damage and long-term cognitive dysfunction.

Inhibitory Effects of Asparagus cochinchinensis in LPS-Stimulated BV-2 Microglial Cells through Regulation of Neuroinflammatory Mediators, the MAP Kinase Pathway, and the Cell Cycle (Lipopolysaccharide로 자극된 BV-2 미세교세포에서 신경염증 매개체, MAP kinase경로, 세포주기의 조절에 의한 천문동(Asparagus cochinchinensis)의 저해효과)

  • Lee, Hyun Ah;Kim, Ji Eun;Choi, Jun Young;Sung, Ji Eun;Youn, Woo Bin;Son, Hong Joo;Lee, Hee Seob;Kang, Hyun-Gu;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.331-342
    • /
    • 2020
  • The suppression of neuroinflammatory responses in microglial cells can be considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Asparagus cochinchinensis has traditionally been used as a medicine to treat fever, cough, kidney disease, breast cancer, inflammatory diseases, and brain diseases. In this study, we investigated the neuroprotective mechanism of an aqueous extract from A. cochinchinensis root (AEAC), particularly its anti-inflammatory effects on lipopolysaccharide (LPS)-activated BV-2 microglial cells. BV-2 cells were treated with four different concentrations of AEAC. No significant toxicity was detected in BV-2 cells treated with AEAC. Nitric oxide (NO), cyclooxygenase-2 (COX-2) mRNA, and inducible nitric oxide synthase (iNOS) mRNA levels were 21% lower in the AEAC+LPS group than in the Vehicle+LPS group. Lower proinflammatory (TNF-α and IL-1β) and anti-inflammatory cytokine (IL-6 and IL-10) levels were also detected in the AEAC+LPS group than in the Vehicle+LPS group, albeit at varying rates. Moreover, the phosphorylation of mitogen-activated protein kinase (MAPK) members after LPS treatment was significantly recovered in the AEAC-pretreated group compared to the Vehicle+LPS group, enhancement of the phosphorylation of mitogen-activated protein kinase (MAPK) members after LPS treatment was significantly recovered in the AEAC-pretreated group, while cell cycle arrest at the G2/M phase caused by LPS treatment was less severe in the AEAC+LPS group. The increase in reactive oxygen species (ROS) generation induced by LPS treatment was also lower in the AEAC-pretreated group than in the Vehicle+LPS group. This is the first study to show that AEAC exerts anti-neuroinflammatory activity against LPS stimulation by regulating the MAPK signaling pathway, the cell cycle, and ROS production.

Extracts of Allium fistulosum Attenuates Pro-Inflammatory Action in the Lipopolysaccharide-Stimulated BV2 Microglia Cells (Lipopolysaccharide에 의한 BV2 세포의 염증 반응에 대한 파 추출물의 저해 활성)

  • Park, Shin-Hyoung;Kim, Jung-In;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.796-804
    • /
    • 2011
  • Microglia are central nervous system (CNS)-resident professional macrophages that function as the principal immune cells responding to pathological stimulations in the CNS. Activation of microglia, induced by various pathogens, protects neurons and maintains homeostasis in the CNS, but severe activation causes inflammatory responses secreting various neurotoxic molecules such as nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines. Allium fistulosum, a member of the onion family, is mainly cultivated for consumption, as well as medicinal use in Oriental medicine. It has been reported that A. fistulosum has various biological effects such as anti-oxidant, anti-platelet aggregation, anti-fungus and anti-cholesterol synthesis, however there has been no research about the anti-inflammatory effects of A. fistulosum extracts. In this study, it was undertaken to explore the functions of A. fistulosum as a suppressor of neuronal inflammation by using BV2 microglia cells. As a result, it was found that four kinds of extracts of A. fistulosum effectively reduced the expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) at both mRNA and protein levels, and also attenuated pro-inflammatory cytokines such as tumor necrosis alpha (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$) and interleukin-6 (IL-6) at the mRNA level in BV2 stimulated by lipopolysaccharide (LPS). In addition, the extracts of A. fistulosum attenuated the release of NO markedly, as well as resulting in slight decreases of TNF-${\alpha}$ and IL-6 production, the effects of which were most significant when treated with ethyl alcohol extract from the whole A. fistulosum. In conclusion, the data indicated that the anti-inflammatory actions of A. fistulosum against BV2 microglia cells is through the down-regulation of iNOS, COX2 and pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-6, and these effects are expected to help in the protection of nerve tissues by suppressions of neuronal inflammation in various neurodegenerative diseases.