• 제목/요약/키워드: neuro-fuzzy techniques

검색결과 50건 처리시간 0.024초

Dynamic ATC Computation for Real-Time Power Markets

  • Venkaiah, Ch.;Kumar, D.M. Vinod;Murali, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.209-219
    • /
    • 2010
  • In this paper, a novel dynamic available transfer capability (DATC) has been computed for real time applications using three different intelligent techniques viz. i) back propagation algorithm (BPA), ii) radial basis function (RBF), and iii) adaptive neuro fuzzy inference system (ANFIS) for the first time. The conventional method of DATC is tedious and time consuming. DATC is concerned with calculating the maximum increase in point to point transfer such that the transient response remains stable and viable. The ATC information is to be continuously updated in real time and made available to market participants through an internet based Open Access Same time Information System (OASIS). The independent system operator (ISO) evaluates the transaction in real time on the basis of DATC information. The dynamic contingency screening method [1] has been utilized and critical contingencies are selected for the computation of DATC using the energy function based potential energy boundary surface (PEBS) method. The PEBS based DATC has been utilized to generate patterns for the intelligent techniques. The three different intelligent methods are tested on New England 68-bus 16 machine and 39-bus 10 machine systems and results are compared with the conventional PEBS method.

KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계 (Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data)

  • 김현명;오성권;이용희
    • 한국지능시스템학회논문지
    • /
    • 제23권5호
    • /
    • pp.473-478
    • /
    • 2013
  • 본 논문에서는 KLAPS(Korea Local Analysis and Prediction System)의 재분석 자료를 이용하여 지능형 뉴로-퍼지 알고리즘 RBFNNs(Polynomial-based Radial Basis Function Neural Networks) 기반 호우특보 판별 모델을 개발한다. 기존의 호우예측 시스템들의 예측능력은 일반적으로 기상데이터의 가공 기법의 영향을 받는다. 본 연구에서는 이를 보완하기 위하여 기상데이터의 전처리를 통한 호우예측 방법을 소개한다. 기상 데이터 전처리 기법은 KLAPS 데이터를 기반으로 지점별 변환, 누적강수량 생성, 시계열 데이터 가공, 호우특보 추출 방식에 의하여 설계된다. 최종적으로, 향후 t(t=1,2,3) 시간 후 6시간 동안 누적강수량에 대해 예측하고 호우특보를 결정하기 위한 정보를 제공한다. 또한 다항식의 형태, 규칙의 개수, 퍼지화 계수와 같은 제안된 모델의 중요 파라미터는 최적화 기법인 차분 진화(Differential Evolution; DE)를 이용하여 최적화한다.

ATM 트랙픽 제어기에서 신경망-퍼지 논리 제어를 이용한 지능형 모델링 기법 (Intelligent Modelling Techniques Using the Neuro-Fuzzy Logic Control in ATM Traffic Controller)

  • 이배호;김광희
    • 한국통신학회논문지
    • /
    • 제25권4B호
    • /
    • pp.683-691
    • /
    • 2000
  • 본 논문에서는 정확한 연결 설정을 결정하기 위해 Hopfield 신경회로망을 이용한 셀 다중화기와 역전파 신경회로망을 이용한 대역폭 예측기를 제안하였다. 다중화된 대역폭에서 망의 이용률을 극대화시키고 이용자 트랙픽의 QoS를 만족시키는 최소 대역폭이 새로 고안한 역전파 신경회로망 대역폭 예측기를 통하여 예측되어진다. 연결 수락 제어기는 예측된 대역폭과 망내의 사용 가능한 대역폭을 비교하여 연결 수락 여부를 판단한다. 연결이 설정된 사용자 소스를 감시하며 계약 위반시 적절한 조치를 취하는 퍼지 논리 제어 트래픽 감시 방법과 멀티미디어 트래픽의 주된 특성인 버스트 제어를 통한 망의 효율을 증가시키는 분석적 트래픽 형태 제어 방법을 제시한다. 제안된 트래픽 제어기는 성능이 우수하다고 평가된 기존의 제어기들과 성능 평가를 하였으며, 시뮬레이션 결과는 기존의 제어기보다 성능이 우수함을 보여주었다.

  • PDF

터널지반 평가의 객관화를 위한 퍼지추론시스템 연구 (Study on the Fuzzy Inference System for Objectivity of Ground Evaluation in Tunnelling)

  • 조만섭;김영석
    • 터널과지하공간
    • /
    • 제13권1호
    • /
    • pp.6-19
    • /
    • 2003
  • 터널의 막장면 조사에서 조사결과의 객관성을 증대시키고, 지반특성에 적합한 지보패턴 및 보강공법을 제시하기 위하여 본 연구를 수행하였다. 본 연구에서는 퍼지집합이론과 뉴로퍼지기법 등을 적용한 prototype의 터널 안정성평가 시스템(NFEST)을 개발하였고, 36개의 막장관찰자료들을 대상으로 신뢰성을 평가하여 비교적 만족한 결과를 얻을 수 있었다 본 연구의 결과를 요약하면, (1) 터널 지반평가의 용이성을 위해 국내 기술자에게 익숙한 RMR분류를 근거로 12개 평가항목을 제안하였다. (2) 12개 평가항목에 의해 추론된 RMRinf값과 산술합에 의한 RMRorg값 그리고 조사자의 주관적 판단에 의한 RMRinf값 사이의 상관계수(│R│)는 각각 0.83과 0.79로 비교적 높은 상관성을 나타내었다. (3) 터널 막장면에 대한 종합적인 안정성은 RMRinf(│R│=0.7)와 암반풍화정도(│R│=0.84)에서 비교적 양호한 상관성을 나타내었다.

Application of the optimal fuzzy-based system on bearing capacity of concrete pile

  • Kun Zhang;Yonghua Zhang;Behnaz Razzaghzadeh
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.25-41
    • /
    • 2024
  • The measurement of pile bearing capacity is crucial for the design of pile foundations, where in-situ tests could be costly and time needed. The primary objective of this research was to investigate the potential use of fuzzy-based techniques to anticipate the maximum weight that concrete driven piles might bear. Despite the existence of several suggested designs, there is a scarcity of specialized studies on the exploration of adaptive neuro-fuzzy inference systems (ANFIS) for the estimation of pile bearing capacity. This paper presents the introduction and validation of a novel technique that integrates the fire hawk optimizer (FHO) and equilibrium optimizer (EO) with the ANFIS, referred to as ANFISFHO and ANFISEO, respectively. A comprehensive compilation of 472 static load test results for driven piles was located within the database. The recommended framework was built, validated, and tested using the training set (70%), validation set (15%), and testing set (15%) of the dataset, accordingly. Moreover, the sensitivity analysis is performed in order to determine the impact of each input on the output. The results show that ANFISFHO and ANFISEO both have amazing potential for precisely calculating pile bearing capacity. The R2 values obtained for ANFISFHO were 0.9817, 0.9753, and 0.9823 for the training, validating, and testing phases. The findings of the examination of uncertainty showed that the ANFISFHO system had less uncertainty than the ANFISEO model. The research found that the ANFISFHO model provides a more satisfactory estimation of the bearing capacity of concrete driven piles when considering various performance evaluations and comparing it with existing literature.

On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence

  • Gullu, Hamza;Fedakar, Halil ibrahim
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.441-464
    • /
    • 2017
  • The determination of the mixture parameters of stabilization has become a great concern in geotechnical applications. This paper presents an effort about the application of artificial intelligence (AI) techniques including radial basis neural network (RBNN), multi-layer perceptrons (MLP), generalized regression neural network (GRNN) and adaptive neuro-fuzzy inference system (ANFIS) in order to predict the unconfined compressive strength (UCS) of silty soil stabilized with bottom ash (BA), jute fiber (JF) and steel fiber (SF) under different freeze-thaw cycles (FTC). The dosages of the stabilizers and number of freeze-thaw cycles were employed as input (predictor) variables and the UCS values as output variable. For understanding the dominant parameter of the predictor variables on the UCS of stabilized soil, a sensitivity analysis has also been performed. The performance measures of root mean square error (RMSE), mean absolute error (MAE) and determination coefficient ($R^2$) were used for the evaluations of the prediction accuracy and applicability of the employed models. The results indicate that the predictions due to all AI techniques employed are significantly correlated with the measured UCS ($p{\leq}0.05$). They also perform better predictions than nonlinear regression (NLR) in terms of the performance measures. It is found from the model performances that RBNN approach within AI techniques yields the highest satisfactory results (RMSE = 55.4 kPa, MAE = 45.1 kPa, and $R^2=0.988$). The sensitivity analysis demonstrates that the JF inclusion within the input predictors is the most effective parameter on the UCS responses, followed by FTC.

Optimization of shear connectors with high strength nano concrete using soft computing techniques

  • Sedghi, Yadollah;Zandi, Yosef;Paknahad, Masoud;Assilzadeh, Hamid;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • 제11권6호
    • /
    • pp.595-606
    • /
    • 2021
  • This paper conducted mainly for forecasting the behavior of the shear connectors in steel-concrete composite beams based on the different factors. The main goal was to analyze the influence of variable parameters on the shear strength of C-shaped and L-shaped angle shear connectors. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for the mentioned shear strength forecasting. Five inputs are considered: height, length, thickness of shear connectors together with concrete strength and respective slip of the shear connectors after testing. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the shear strength of C-shaped and L-shaped angle shear connectors. The results show that the forecasting methodology developed in this research is useful for enhancing the multiple performances characterizing in the shear strength prediction of C and L shaped angle shear connectors analyzing.

Application of adaptive neuro-fuzzy system in prediction of nanoscale and grain size effects on formability

  • Nan Yang;Meldi Suhatril;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.155-164
    • /
    • 2023
  • Grain size in sheet metals in one of the main parameters in determining formability. Grain size control in industry requires delicate process control and equipment. In the present study, effects of grain size on the formability of steel sheets is investigated. Experimental investigation of effect of grain size is a cumbersome method which due to existence of many other effective parameters are not conclusive in some cases. On the other hand, since the average grain size of a crystalline material is a statistical parameter, using traditional methods are not sufficient for find the optimum grain size to maximize formability. Therefore, design of experiment (DoE) and artificial intelligence (AI) methods are coupled together in this study to find the optimum conditions for formability in terms of grain size and to predict forming limits of sheet metals under bi-stretch loading conditions. In this regard, a set of experiment is conducted to provide initial data for training and testing DoE and AI. Afterwards, the using response surface method (RSM) optimum grain size is calculated. Moreover, trained neural network is used to predict formability in the calculated optimum condition and the results compared to the experimental results. The findings of the present study show that DoE and AI could be a great aid in the design, determination and prediction of optimum grain size for maximizing sheet formability.

Novel ANFIS based SMC with Fractional Order PID Controller for Non Linear Interacting Coupled Spherical Tank System for Level Process

  • Jegatheesh A;Agees Kumar C
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.169-177
    • /
    • 2024
  • Interacting Spherical tank has maximum storage capacity is broadly utilized in industries because of its high storage capacity. This two tank level system has the nonlinear characteristics due to its varying surface area of cross section of tank. The challenging tasks in industries is to manage the flow rate of liquid. This proposed work plays a major role in controlling the liquid level in avoidance of time delay and error. Several researchers studied and investigated about reducing the nonlinearity problem and their approaches do not provide better result. Different types of controllers with various techniques are implemented by the proposed system. Intelligent Adaptive Neuro Fuzzy Inference System (ANFIS) based Sliding Mode Controller (SMC) with Fractional order PID controller is a novel technique which is developed for a liquid level control in a interacting spherical tank system to avoid the external disturbances perform better result in terms of rise time, settling time and overshoot reduction. The performance of the proposed system is obtained by analyzing the simulation result obtained from the controller. The simulation results are obtained with the help of FOMCON toolbox with MATLAB 2018. Finally, the performance of the conventional controller (FOPID, PID-SMC) and proposed ANFIS based SMC-FOPID controllers are compared and analyzed the performance indices.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.