• Title/Summary/Keyword: neuro-fuzzy Inference

Search Result 231, Processing Time 0.022 seconds

Type-2 Fuzzy Logic Predictive Control of a Grid Connected Wind Power Systems with Integrated Active Power Filter Capabilities

  • Hamouda, Noureddine;Benalla, Hocine;Hemsas, Kameleddine;Babes, Badreddine;Petzoldt, Jurgen;Ellinger, Thomas;Hamouda, Cherif
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1587-1599
    • /
    • 2017
  • This paper proposes a real-time implementation of an optimal operation of a double stage grid connected wind power system incorporating an active power filter (APF). The system is used to supply the nonlinear loads with harmonics and reactive power compensation. On the generator side, a new adaptive neuro fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) control is proposed to track the maximum wind power point regardless of wind speed fluctuations. Whereas on the grid side, a modified predictive current control (PCC) algorithm is used to control the APF, and allow to ensure both compensating harmonic currents and injecting the generated power into the grid. Also a type 2 fuzzy logic controller is used to control the DC-link capacitor in order to improve the dynamic response of the APF, and to ensure a well-smoothed DC-Link capacitor voltage. The gained benefits from these proposed control algorithms are the main contribution in this work. The proposed control scheme is implemented on a small-scale wind energy conversion system (WECS) controlled by a dSPACE 1104 card. Experimental results show that the proposed T2FLC maintains the DC-Link capacitor voltage within the limit for injecting the power into the grid. In addition, the PCC of the APF guarantees a flexible settlement of real power exchanges from the WECS to the grid with a high power factor operation.

A Study on the Analysis of Bicycle Road Service Level by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 자전거도로 서비스수준 분석에 관한 연구)

  • Kim, Kyung Whan;Jo, Gyu Boong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.217-225
    • /
    • 2011
  • Currently our country has very serious problems of traffic congestion and urban environment due to increasing automobile ownership. Recently, our concern about environmentally sustainable transportation and green transportation is increasing, so the government is pushing ahead the policy of bicycle using activation. So it is needed to develop a model to analyze the service level of bicycle roads more realistically. In this study, a neuro-fuzzy inference model to analyze the service level of bicycle roads was built selecting the width of bicycle roads, the number of conflicts during cycling and pedestrian volume, which have fuzzy characteristics, as input variables. The predictability of the model was evaluated comparing the surveyed and the estimated. The values of the statistics, $R^2$, MAE and MSE were 0.987, 0.142, 0.032. Therefore, It may be judged that the explainability of the model is very high. The service levels of bicyle roads estimated by the model are 1~3 steps lower than KHCM assessments. The reason may be explained that the model estimates the service level considering the width of bicycle roads and the number of conflicts simultaneously besides pedestrian volume.

A Neuro-Fuzzy System Modeling using Gaussian Mixture Model and Clustering Method (GMM과 클러스터링 기법에 의한 뉴로-퍼지 시스템 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.571-576
    • /
    • 2002
  • There have been a lot of considerations dealing with improving the performance of neuro-fuzzy system. The studies on the neuro-fuzzy modeling have largely been devoted to two approaches. First is to improve performance index of system. The other is to reduce the structure size. In spite of its satisfactory result, it should be noted that these are difficult to extend to high dimensional input or to increase the membership functions. We propose a novel neuro-fuzzy system based on the efficient clustering method for initializing the parameters of the premise part. It is a very useful method that maintains a few number of rules and improves the performance. It combine the various algorithms to improve the performance. The Expectation-Maximization algorithm of Gaussian mixture model is an efficient estimation method for unknown parameter estimation of mirture model. The obtained parameters are used for fuzzy clustering method. The proposed method satisfies these two requirements using the Gaussian mixture model and neuro-fuzzy modeling. Experimental results indicate that the proposed method is capable of giving reliable performance.

Neuro-Fuzzy Diagnostic Technique for Performance Evaluation of a Chiller (뉴로 퍼지를 이용한 냉동기 성능 진단 기법)

  • Shin, Young-Gy;Chang, Young-Soo;Kim, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.553-560
    • /
    • 2003
  • On-site diagnosis of chiller performance is an essential step fur energy saving business. The main purpose of the on-site diagnosis is to predict the COP of a target chiller. Many models based on thermodynamics background have been proposed for this purpose. However, they have to be modified from chiller to chiller and require deep insight into thermodynamics that most of field engineers are often lacking in. This study focuses on developing an easy-to-use diagnostic technique that is based on adaptive neuro-fuzzy inference system (ANFIS). Quality of the training data for ANFIS, sampled over June through September, is assessed by checking COP prediction errors. The architecture of the ANFIS, its error bounds, and collection of training data are described in detail.

Adaptive Neuro-Fuzzy Ingerence based Torque Model of SRM (적응 뉴로퍼지 추론기법에 의한 SRM의 토오크모델)

  • 홍정표;박성준;홍순일;김철우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.279-284
    • /
    • 1999
  • Although the switched reluctance motor (SRM) has a several advantages such as simple magnetic structure, robustness, wide range of speed characteristics and simple driving, it has a considerable inherent torque ripple and speed variation duet to the driving characteristics of pulse current waveform and the nonlinear inductance profile. The high torque ripple and speed variation inhibits wide application. The minimization of the torque ripple is very important in high performance servo drive applications, which require smooth operation with minimum torque pulsations. This paper presents the new SRM torque modeling technique for the control of instantaneous torque. The SRM is modeled by the database of torque profiles for every small variation in currents and rotor angles, which is inferred from the several measured data by the adaptive neuro-fuzzy inference technique. Simulation results demonstrating the effectiveness of proposed torque modeling technique are presented.

  • PDF

A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets

  • Kar, Swapnasarit;Biswal, K.C.
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.397-409
    • /
    • 2020
  • The current study targets to estimate the contribution of the end-anchored FRP composites in resisting shear force using a soft computing tool i.e., adaptive neuro-fuzzy inference system (ANFIS). A total of 107 sets of data accumulated from literature was utilized for the development and evaluation of the current ANFIS model. A comparative analysis between the ANFIS predictions and the acquired experimental results has shown that the ANFIS predictions are in very good agreement with that of experimental ones. Additionally, the accuracy of the current ANFIS model has been weighed up against the estimates of nine widely adopted design guidelines. Based on various statistical parameters, it has been deduced that the effectiveness of the current ANFIS model is better than the considered design guidelines. Besides this, a parametric study was carried out to explore the combined effect of different parameters as well as the impact of individual parameters.

Neuro-Fuzzy Identification for Non-linear System and Its Application to Fault Diagnosis (비선형 계통의 뉴로-퍼지 동정과 이의 고장 진단 시스템에의 적용)

  • 김정수;송명현;이기상;김성호
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.447-452
    • /
    • 1998
  • A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. ANFIS(Adaptive Neuro-Fuzzy Inference System) which contains multiple linear models as consequent part is used to model non linear systems. In this paper, we proposes an FDI system for non linear systems using ANFIS. The proposed diagnositc system consists of two ANFISs which operate in two different modes (parallel-and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis function) network to identify the faults. The proposed FDI scheme has been tested by simultation on a two-tank system

  • PDF

Safety assessment of biological nanofood products via intelligent computer simulation

  • Zhao, Yunfeng;Zhang, Le
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.121-134
    • /
    • 2022
  • Emerge of nanotechnology impacts all aspects of humans' life. One of important aspects of the nanotechnology and nanoparticles (NPs) is in the food production industry. The safety of such foods is not well recognized and producing safe foods using nanoparticles involves delicate experiments. In this study, we aim to incorporate intelligent computer simulation in predicting safety degree of nanofoods. In this regard, the safety concerns on the nano-foods are addressed considering cytotoxicity levels in metal oxides nanoparticles using adaptive neuro-fuzzy inference system (ANFIS) and response surface method (RSM). Three descriptors including chemical bond length, lattice energy and enthalpy of formation gaseous cation of 15 selected NPs are examined to find their influence on the cytotoxicity of NPs. The most effective descriptor is selected using RSM method and dependency of the toxicity of these NPs on the descriptors are presented in 2D and 3D graphs obtained using ANFIS technique. A comprehensive parameters study is conducted to observe effects of different descriptors on cytotoxicity of NPs. The results indicated that combinations of descriptors have the most effects on the cytotoxicity.

Automobile diagnosis by euro-Fuzzy Technique (뉴로-퍼지 기법에 의한 자동차 진단)

  • Shin, Joon;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1833-1840
    • /
    • 1992
  • In the diagnostic process for automobile, Neuro-Fuzzy technique was compared with the conventional diagnostic method for the verification of performance, and proto-type system was developed. For the utilities of the system, 1/3 octave filter(band-pass filter) and A/D converter were used for data acquisition and then data were analyzed using octave band processing and pattern recognition using hamming network algorithm. In order to raise the reliability of the diagnostic results by considering many operating variables and condition of automobile to be diagnosed, fuzzy inference technique was applied in combining several information. The validation of this diagnostic system was examined through computer simulation and experiment, and it showed an acceptable performance for diagnostic process.

The Structure and Parameter Optimization of the Fuzzy-Neuro Controller (퍼지 신경망 제어기의 구조 및 매개 변수 최적화)

  • Chang, Wook;Kwon, Oh-Kook;Joo, Young-Hoon;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.739-742
    • /
    • 1997
  • This paper proposes the structure and parameter optimization technique of fuzzy neural networks using genetic algorithm. Fuzzy neural network has advantages of both the fuzzy inference system and neural network. The determination of the optimal parameters and structure of the fuzzy neural networks, however, requires special efforts. To solve these problems, we propose a new learning method for optimization of fuzzy neural networks using genetic algorithm. It can optimize the structure and parameters of the entire fuzzy neural network globally. Numerical example is provided to show the advantages of the proposed method.

  • PDF