Concrete undergoes a series of thermo-based physio-chemical changes once exposed to elevated temperatures. Such changes adversely alter the composition of concrete and oftentimes lead to fire-induced explosive spalling. Spalling is a multidimensional, complex and most of all sophisticated phenomenon with the potential to cause significant damage to fire-exposed concrete structures. Despite past and recent research efforts, we continue to be short of a systematic methodology that is able of accurately assessing the tendency of concrete to spall under fire conditions. In order to bridge this knowledge gap, this study explores integrating novel artificial intelligence (AI) techniques; namely, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA), together with traditional statistical analysis (multilinear regression (MLR)), to arrive at state-of-the-art procedures to predict occurrence of fire-induced spalling. Through a comprehensive datadriven examination of actual fire tests, this study demonstrates that AI techniques provide attractive tools capable of predicting fire-induced spalling phenomenon with high precision.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.483-486
/
2015
The objective of this study is to develop generalized regression neural networks (GRNN) model for estimating daily solar radiation using limited weather variables at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using GRNN model. From the performance evaluation and scatter diagrams of GRNN model, GRNN 3 (three input) model produces the best results for both stations. Results obtained indicate that GRNN model can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois. These results testify the generation capability of GRNN model and its ability to produce accurate estimates in Illinois.
The dual-fuel technology, which uses gaseous fuel as the main fuel and liquid as the pilot fuel, is an appealing technology for reducing the exhaust emissions. The current study proposes emission models based on ANFIS for a dual-fuel using producer gas (PG)-diesel engine. Emissions measurements were taken at different engine load levels and fuel injection timings. The proposed model predictions were examined using statistical methods. With R2 values in the range of 0.9903 to 0.9951, the established ANFIS model was found to be consistently robust in predicting emission characteristics. The mean absolute percentage deviate in range 1.9 to 4.6%, and mean squared error varies in range 0.0018 to 13.9%. The evaluation of the ANFIS model developed shows a reliable claim of intrinsic sensitivity, strength, and outstanding generalization. The presented meta-model can be used to simulate the engine's operation in order to create an efficient control tool.
Journal of the Korean Institute of Telematics and Electronics S
/
v.35S
no.12
/
pp.17-26
/
1998
Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But for the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. The time-of-flight(TOF) method generally used for distance measurement can not distinguish small object patterns of plane, corner or edge. To resolve the problem, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensors has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. Also simple patterns are classified based on analyzing signal reflections. In this paper we propose a method of a sensor array system with improved capability in pattern distinction using electronic circuits accompanying the sensor array, and intelligent algorithm based on neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. A set of different return signals from neighborhood sensors is manipulated to provide enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.
Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
Journal of Korea Water Resources Association
/
v.53
no.6
/
pp.395-408
/
2020
This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.15
no.2
/
pp.102-110
/
2015
The main source of noise in computed tomography (CT) images is a quantum noise, which results from statistical fluctuations of X-ray quanta reaching the detector. This paper proposes a neural network (NN) based hybrid filter for removing quantum noise. The proposed filter consists of bilateral filters (BFs), a single or multiple neural edge enhancer(s) (NEE), and a neural filter (NF) to combine them. The BFs take into account the difference in value from the neighbors, to preserve edges while smoothing. The NEE is used to clearly enhance the desired edges from noisy images. The NF acts like a fusion operator, and attempts to construct an enhanced output image. Several measurements are used to evaluate the image quality, like the root mean square error (RMSE), the improvement in signal to noise ratio (ISNR), the standard deviation ratio (MSR), and the contrast to noise ratio (CNR). Also, the modulation transfer function (MTF) is used as a means of determining how well the edge structure is preserved. In terms of all those measurements and means, the proposed filter shows better performance than the guided filter, and the nonlocal means (NLM) filter. In addition, there is no severe restriction to select the number of inputs for the fusion operator differently from the neuro-fuzzy system. Therefore, without concerning too much about the filter selection for fusion, one could apply the proposed hybrid filter to various images with different modalities, once the corresponding noise characteristics are explored.
The Transactions of The Korean Institute of Electrical Engineers
/
v.64
no.6
/
pp.922-934
/
2015
In this paper, The classification between precipitation echo(PRE) and non-precipitation echo(N-PRE) (including ground echo and clear echo) is carried out from weather radar data using neuro-fuzzy algorithm. In order to classify between PRE and N-PRE, Input variables are built up through characteristic analysis of radar data. First, the event classifier as the first classification step is designed to classify precipitation event and non-precipitation event using input variables of RBFNNs such as DZ, DZ of Frequency(DZ_FR), SDZ, SDZ of Frequency(SDZ_FR), VGZ, VGZ of Frequency(VGZ_FR). After the event classification, in the precipitation event including non-precipitation echo, the non-precipitation echo is completely removed by the echo classifier of the second classifier step that is built as Type-2 FCM based RBFNNs. Also, parameters of classification system are acquired for effective performance using PSO(Particle Swarm Optimization). The performance results of the proposed echo classifier are compared with CZ. In the sequel, the proposed model architectures which use event classifier as well as the echo classifier of Interval Type-2 FCM based RBFNN show the superiority of output performance when compared with the conventional echo classifier based on RBFNN.
Journal of the Korean Institute of Intelligent Systems
/
v.23
no.5
/
pp.473-478
/
2013
In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.132-136
/
2007
최근 지구온난화로 인한 이상기후의 영향으로 강우일수는 줄고 있으나 강수량은 예년과 비슷한 수준을 보이고 있다. 이로 인해 갈수기의 용수부족 현상은 더욱 심해지고. 장마철의 홍수피해와 게릴라성 집중호우로 인한 피해가 커지는 등 해가 갈수록 홍수 예경보의 중요성은 더욱 높아지고 있다. 그럼에도 불구하고 현재 홍수 예경보 체계는 몇 가지 문제를 가지고 있다. 기존 예경보 체계의 경우 한 번의 예측을 수행하기 위해 수반되는 전처리과정과 주계산과정을 거치는 동안 각 과정에서 발생한 오차들이 반복, 누적되어 최종 결과물(예측된 유출량) 속에 모두 포함된다. 또한 기존 체계에서는 유출모형을 적용하기 위해서 토양형. 피복상태 등에 관련된 매개변수들이 필요한데. 이러한 매개변수의 결정에 어려움이 있고. 불확실성을 갖고 있다. 본 연구에서는 불확실성을 적극적으로 인정하고 수학적으로 해석하려는 fuzzy 이론을 신경망 이론에 도입하여 홍수 예경보 시스템의 운영과정에서 발생하는 불확실성의 문제를 해결하고자 하였다. 본 연구에서 사용한 ANFIS(Adaptive Neuro-Fuzzy Inference System)은 data driven model(자료에 기반을 둔 모형)의 하나로 다음과 같은 장점을 가진다. 우선 data driven model은 유역의 물리적, 지형적 특성을 고려하지 않고(매개변수설정에서 발생하는 문제 해결 가능), 입력자료와 출력자료만을 고려하여 구축되는 모형이므로, 유역의 물리적 자료나 지형 자료와 같은 방대한 양의 자료 수집이 필요 없고, 일단 모형이 구축되면 자료의 입력만으로도 신뢰성 높은 결과를 단시간 내에 효율적으로 획득할 수 있다. 그리고 유역 내의 상황이 변화하더라도, 이들의 영향을 고려하여 쉽게 모형을 갱신할 수 있다. 마지막으로 모형의 구축 과정이 물리적 모형에 비해 비교적 간편하다는 장점이 있다. 본 연구에서는 ANFIS를 통해 탄천유역의 강수량 자료와 대곡교의 수위자료를 입력자료로 사용하여 대곡교의 수위를 예측하였다. 입력 자료는 시간차 계열의 강우량과 수위 자료를 사용하였으며 모형을 통하여 t+1, t+2, t+3 시간 후의 수위를 예측하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.11
/
pp.5568-5587
/
2018
This research uses artificial intelligence methods for computer network intrusion detection system modeling. Primary classification is done using self-organized maps (SOM) in two levels, while the secondary classification of ambiguous data is done using Sugeno type Fuzzy Inference System (FIS). FIS is created by using Adaptive Neuro-Fuzzy Inference System (ANFIS). The main challenge for this system was to successfully detect attacks that are either unknown or that are represented by very small percentage of samples in training dataset. Improved algorithm for SOMs in second layer and for the FIS creation is developed for this purpose. Number of clusters in the second SOM layer is optimized by using our improved algorithm to minimize amount of ambiguous data forwarded to FIS. FIS is created using ANFIS that was built on ambiguous training dataset clustered by another SOM (which size is determined dynamically). Proposed hybrid model is created and tested using NSL KDD dataset. For our research, NSL KDD is especially interesting in terms of class distribution (overlapping). Objectives of this research were: to successfully detect intrusions represented in data with small percentage of the total traffic during early detection stages, to successfully deal with overlapping data (separate ambiguous data), to maximize detection rate (DR) and minimize false alarm rate (FAR). Proposed hybrid model with test data achieved acceptable DR value 0.8883 and FAR value 0.2415. The objectives were successfully achieved as it is presented (compared with the similar researches on NSL KDD dataset). Proposed model can be used not only in further research related to this domain, but also in other research areas.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.