• Title/Summary/Keyword: neuro­fuzzy

Search Result 528, Processing Time 0.024 seconds

The power regulation of a High-Frequency Induction Heating System with time variance load using a neural fuzzy controller (뉴로퍼지 제어기를 이용한 고주파 유도 가열기의 시변부하에 대한 정전력 제어)

  • 장종승;김승철;임영도
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.2
    • /
    • pp.223-230
    • /
    • 1998
  • This paper describes a phase-shift pulse-width modulation and pulse-frequency modulation series resonant high-frequency inverter using IGBT(Insulated-Gated Bipolar Transistor) for the power control of high-frequency induction heating using neuro-fuzzy, which is practically applied for 20KHz~500KHz induction-heating and melting power supply in industrial fields. The adaptive frequency tracking based phase-shifting PWM(Pulse-Width Modulation) regulation scheme is presented in order to minimize switching losses. The trially-produced breadboards using IGBT are successfully demonstrated and discussed.

  • PDF

Analyzing behavior of circular concrete-filled steel tube column using improved fuzzy models

  • Zheng, Yuxin;Jin, Hongwei;Jiang, Congying;Moradi, Zohre;Khadimallah, Mohamed Amine;Safa, Maryam
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.625-637
    • /
    • 2022
  • Axial compression capacity (Pu) is a significant yet complex parameter of concrete-filled steel tube (CFST) columns. This study offers a novel ensemble tool, adaptive neuro-fuzzy inference system (ANFIS) supervised by equilibrium optimization (EO), for accurately predicting this parameter. Moreover, grey wolf optimization (GWO) and Harris hawk optimizer (HHO) are considered as comparative supervisors. The used data is taken from earlier literature provided by finite element analysis. ANFIS is trained by several population sizes of the EO, GWO, and HHO to detect the best configurations. At a glance, the results showed the competency of such ensembles for learning and reproducing the Pu behavior. In details, respective mean absolute errors along with correlation values of 4.1809% and 0.99564, 10.5947% and 0.98006, and 4.8947% and 0.99462 obtained for the EO-ANFIS, GWO-ANFIS, and HHO-ANFIS, respectively, indicated that the proposed EO-ANFIS can analyze and predict the behavior of CFST columns with the highest accuracy. Considering both time and accuracy, the EO provides the most efficient optimization of ANFIS and can be a nice substitute for experimental approaches.

An adaptive neuro-fuzzy approach using IoT data in predicting springback in ultra-thin stainless steel sheets with consideration of grain size

  • Jing Zhao;Lichun Wan;Mostafa Habibi;Ameni Brahmia
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.109-124
    • /
    • 2024
  • In the era of smart manufacturing, precise prediction of springback-a common issue in ultra-thin sheet metal forming- and forming limits are critical for ensuring high-quality production and minimizing waste. This paper presents a novel approach that leverages the Internet of Things (IoT) and Artificial Neural Networks (ANN) to enhance springback and forming limits prediction accuracy. By integrating IoT-enabled sensors and devices, real-time data on material properties, forming conditions, and environmental factors are collected and transmitted to a central processing unit. This data serves as the input for an ANN model, which is trained with crystal plasticity simulations and experimental data to predict springback with high precision. Our proposed system not only provides continuous monitoring and adaptive learning capabilities but also facilitates real-time decision-making in manufacturing processes. Experimental results demonstrate significant improvements in prediction accuracy compared to traditional methods, highlighting the potential of IoT and ANN integration in advancing smart manufacturing. This approach promises to revolutionize quality control and operational efficiency in the industry, paving the way for more intelligent and responsive manufacturing systems.

Study of On-line Performance Diagnostic Program of A Helicopter Turboshaft Engine (헬리콥터 터보축 엔진의 온라인 상태진단 프로그램 연구)

  • Kong, Chang-Duk;Koo, Young-Ju;Kho, Seong-Hee;Ryu, Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1238-1244
    • /
    • 2009
  • This work proposes a GUI-type on-line diagnostic program using SIMULINK and Fuzzy-Neuro algorithms for a helicopter turboshaft engine. During development of the diagnostic program, a look-up table type base performance module for reducing computer calculating time and a signal generation module for simulating real time performance data are used. This program is composed of the on-line condition monitoring program to monitor on-line measuring performance condition, the fuzzy inference system to isolate the faults from measuring data and the neural network to quantify the isolated faults. The reliability and capability of the proposed on-line diagnostic program were confirmed through application to the helicopter engine health monitoring.

Design of Neuro-Fuzzy based Intelligent Inference Algorithm for Energy Management System with Legacy Device (비절전 가전기기를 위한 에너지 관리 시스템의 뉴로-퍼지 기반 지능형 추론 알고리즘 설계)

  • Choi, In-Hwan;Yoo, Sung-Hyun;Jung, Jun-Ho;Lim, Myo-Taeg;Oh, Jung-Jun;Song, Moon-Kyou;Ahn, Choon-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.779-785
    • /
    • 2015
  • Recently, home energy management system (HEMS) for power consumption reduction has been widely used and studied. The HEMS performs electric power consumption control for the indoor electric device connected to the HEMS. However, a traditional HEMS is used for passive control method using some particular power saving devices. Disadvantages with this traditional HEMS is that these power saving devices should be newly installed to build HEMS environment instead of existing home appliances. Therefore, an HEMS, which performs with existing home appliances, is needed to prevent additional expenses due to the purchase of state-of-the-art devices. In this paper, an intelligent inference algorithm for EMS at home for non-power saving electronic equipment, called legacy devices, is proposed. The algorithm is based on the adaptive network fuzzy inference system (ANFIS) and has a subsystem that notifies retraining schedule to the ANFIS to increase the inference performance. This paper discusses the overview and the architecture of the system, especially in terms of the retraining schedule. In addition, the comparison results show that the proposed algorithm is more accurate than the classic ANFIS-based EMS system.

An Adaptive Tracking Control for Robotic Manipulators based on RBFN

  • Lee, Min-Jung;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 2007
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose an adaptive tracking control for robot manipulators using the radial basis function network (RBFN) that is e. kind of neural networks. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed adaptive tracking controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

Design and Implementation of Speech Music Discrimination System per Block Unit on FM Radio Broadcast (FM 방송 중 블록 단위 음성 음악 판별 시스템의 설계 및 구현)

  • Jang, Hyeon-Jong;Eom, Jeong-Gwon;Im, Jun-Sik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.25-28
    • /
    • 2007
  • 본 논문은 FM 라디오 방송의 오디오 신호를 블록 단위로 음성 음악을 판별하는 시스템을 제안하는 논문이다. 본 논문에서는 음성 음악 판별 시스템을 구축하기 위해 다양한 특정 파라미터와 분류 알고리즘을 제안 한다. 특정 파라미터는 신호처리 분야(Centroid, Rolloff, Flux, ZCR, Low Energy), 음성 인식 분야(LPC, MFCC), 음악 분석 분야(MPitch, Beat)에서 각각 사용되는 파라미터를 사용하였으며 분류 알고리즘으로는 패턴인식 분야(GMM, KNN, BP)와 퍼지 신경망(ANFIS)을 사용하였고, 거리 구현은 Mahalanobis 거리를 사용하였다.

  • PDF

Quality of service management for intelligent systems

  • Lee, Sang-Hyun;Jung, Byeong-Soo;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.3 no.2
    • /
    • pp.18-21
    • /
    • 2014
  • A control application requirements currently used is very low, such as packet loss rate, minimum delay on sensor networks with quality of service (QoS) requirements some packet delivery guarantee. This paper is the sampling period at the end of the actuator and sensor data transfer related to the Miss ratio for each source sensor node, use the controller and the internal ANFIS. The proposed scheme has the advantages of simplicity, scalability, and General. Simulation results of the proposed scheme can provide QoS support in WSANs.

Intelligent Maneuvering Decision System of Mobile Vehicle using Wearable Computing (웨어러블 컴퓨팅에 의한 지능형 주행 판단 시스템)

  • 정성호;김성주;김용택;서재용;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1561-1564
    • /
    • 2003
  • Intelligent Wearable Module is intelligent system that arises when a human is part of the feedback loop of a computational process like a certain control system. Applied system is mobile robot. This paper represents the mobile robot control system remote controlled by Intelligent Wearable Module. So far, owing to the development of 802.l1b technologies, lots of remote control methods through internet have been proposed. To control a mobile robot through internet and guide it under unknown environment. The information about the direction and velocity of the mobile robot feedbacks to the PDA and the PDA send new control method produced from the combination of Neuro and Hierarchical Fuzzy Algorithm

  • PDF

Estimation of Walking Habit in iSpace

  • Szemes, Peter T.;Hashimoto, Hideki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.531-534
    • /
    • 2003
  • In this paper, the Intelligent Space (iSpace) concept is applied for helping disabled or blind persons in crowded environments such as train stations, or airports. The main contribution of this paper is a general mathematical (fuzzy-neuro) description of obstacle avoidance method (walking habit) of moving objects (human beings) in a limited area scanned by the iSpace. A mobile robot with extended functions is introduced as a Mobile Assistant Robot which is assisted by the iSpace. The Mobile Assistant Robot (MAR) can guide and protect a blind person in a crowded environment with the help of the Intelligent Space. The prototype of the Mobile Assistant Robot and simulations of some basic types of obstacle avoidance method (walking habit) are presented.

  • PDF