• 제목/요약/키워드: neurite outgrowth

검색결과 95건 처리시간 0.029초

Enhancement of nerve growth factor production and release by buthanol fraction of Liriope platyphylla in C6 cells and rat cultured astrocyte

  • Hur, Jin-Young;Lee, Pyeong-Jae;Kim, Jeong-Min;Kim, Ho-Cheol;Kim, Sun-Yeou
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.135.3-136
    • /
    • 2003
  • Liriope platyphylla (LP) Wang et Tang has been used for tonic, anti-tussive and expectorant in Korea. In the current study, we found that buthanol fraction of Liriope platyphylla-conditioned media of C6 and primary astrocyte induced the neurite outgrowth of PC 12 cells, which effect was reversed by addition of NGF-antibody. We demonstrated that buthanol fraction of Liriope platyphylla increased the expression and secretion of NGF through RT-PCR and ELISA. (omitted)

  • PDF

인삼 Dammarane Glycoside류 분획물이 일차배양한 계배의 뇌세포에 미치는 영향 (The Effect of Dammarane Glycosides of Panax ginseng on Primary Cultured Chicken Brain Cells)

  • 박미정;송진호;김영중
    • 약학회지
    • /
    • 제33권1호
    • /
    • pp.39-45
    • /
    • 1989
  • Effects of dammarane glycosides of Panax ginseng on primary cultured chicken embryonic brain cells were studied by microscopic observation and determination of the activity of pyruvate dehydrogenase complex (PDHC). Brain cells were prepared from the brain of 10-day-old chicken embryo and cultured with either a standard medium consisted of 85% Dulbecco's Modified Eagle Medium (DMEM), 10% horse serum and 5% chicken embryonic extracts or a deficient medium consisted of 90% DMEM and 10% horse serum. It was observed that dammarane glycosides of Panax ginseng seemed to show the tendency to stimulate the neurite outgrowth of brain cells which were cultured with a deficient medium under microscopic observation. The activity of PDHC in brain cells cultured with a deficient medium was increased by dammarane glycosides of Panax ginseng.

  • PDF

Modulation of Rit Activation by the Alpha Subunit of Go

  • ;길성호
    • 대한의생명과학회지
    • /
    • 제15권4호
    • /
    • pp.327-333
    • /
    • 2009
  • Heterotrimeric GTP binding proteins, G-proteins, mediate signal transduction generated by neurotransmitters and hormones. Among G-proteins, Go proteins are the most abundant in brain and classified as a member of Gi family. Ras-like protein in all tissues (Rit), one of the small GTPases, is a member of a Ras superfamily and identified as an important regulator of neuronal differentiation and cell transformation. Recently, we have reported that Rit functioned as a candidate downstream effector for alpha subunit of Go proteins ($Go{\alpha}$) and regulated neurite outgrowth triggered by $Go{\alpha}$ activation. In this study, we showed that the GTPase domain of $Go{\alpha}$ contributed to the direct interaction with Rit. We also demonstrated that $Go{\alpha}$ could lead to an increase of Rit activity suggesting that Rit play a role as a downstream effector of $Go{\alpha}$.

  • PDF

Redox-modulation of NMDA receptor activity by nitric oxide congeners

  • Kim, Won-Ki;Stuart A. Lipton
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 제3회 추계심포지움
    • /
    • pp.125-132
    • /
    • 1995
  • In neurons, nitric oxide(NO) is produced by neuronal nitric oxide synthase following stimulation of N-methyl-D-aspartate(NMDA) receptors and the subsequent influx of Ca$\^$2+/. NO, induced in this manner, reportedly plays critical roles in neuronal plasticity, including neurite outgrowth, synaptic transmission, and long-term potentiation(LTP) (1-7). However, excessive activation of NMDA receptors has also been shown to be associated with various neurological disorders, including focal ischemia, epilepsy, trauma, neuropathic pain and chronic neurodegenerative maladies, such as Parkinson's disease, Hungtington's disease and amyotrophic lateral sclerosis(8). The paradox that nitric oxide(NO) has both neuroprotective and neurodestructive effects may be explained, at least in part, by the finding that NO effects on neurons are dependent on the redox state. This claim may be supported by the recent finding that tissue concentrations of cysteine approach 700 ${\mu}$M in settings of cerebral ischemia (9), levels of thiol that is expected to influence both the redox state of the system and the NO group itself(10).

  • PDF

수종 생약이 일차배양한 계배의 뇌세포에 미치는 영향 (Studies on the Effect of Several Crude Drugs on Cultured Chicken Brain Cells)

  • 박미정;송진호;김영중
    • 생약학회지
    • /
    • 제20권1호
    • /
    • pp.32-36
    • /
    • 1989
  • Effects of Lycium chinensis, Epimedium koreanum and tuguaconitine which is isolated from Aconitum sibiricum on primary culture chicken embryonic brain cells were studied by microscopic observation and determined of the activity of pyruvate dehydrogenase complex(PDHC). Brain cells were prepared from the brain of 10-day-old chicken embryo and cultured with a medicine consisted of 90% Dulbecco's Modified Eagle Medium(DMEM) and 10% horse serum. It was observed that all substances studied seemed to show the tendency to stimulate the neurite outgrowth of brain cells which were cultured with a deficient medium under microscopic observation. The activity of PDHC in brain cells cultured with a deficient medium was increased by Lysium chinensis and Epimedium koreanum. However, tuguaconitine had not influence on the activity of PDHC.

  • PDF

Structural Basis for LAR-RPTP-Mediated Synaptogenesis

  • Won, Seoung Youn;Kim, Ho Min
    • Molecules and Cells
    • /
    • 제41권7호
    • /
    • pp.622-630
    • /
    • 2018
  • Leukocyte common antigen-related protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that regulate neurite outgrowth and neuronal regeneration. LAR-RPTPs have also received particular attention as the major presynaptic hubs for synapse organization through selective binding to numerous postsynaptic adhesion partners. Recent structural studies on LAR-RPTP-mediated trans-synaptic adhesion complexes have provided significant insight into the molecular basis of their specific interactions, the key codes for their selective binding, as well as the higher-order clustering of LAR-RPTPs necessary for synaptogenic activity. In this review, we summarize the structures of LAR-RPTPs in complex with various postsynaptic adhesion partners and discuss the molecular mechanisms underlying LAR-RPTP-mediated synaptogenesis.

Erk activation mediates lipoPolysaccharide-induced induction of matrix metalloprotease-9 from rat primary astrocytes

  • Lee, Woo-Jong;Yoo, Byung-Kwon;Park, Gyu-Hwan;Ko, Kwang-Ho
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.304.2-304.2
    • /
    • 2002
  • In central nervous system. matrix metalloproteinases (MMPs) are produced by neuron as well as glia and implicated in physiological events such as neurite outgrowth and myelination etc. In addition. MMPs also contribute to the pathogenesis of several CNS diseases such as multiple sclerosis, Alzheimer's disease and malignant glioma. In spite of their functional importance, little is known about the signal transduction pathways leading to the induction of MMPs in CNS. Here. we investigated whether the activation of Erk(1/2) is involved in the induction of MMP-9 in LPS-stimulated primary astrocytes. (omitted)

  • PDF

Fermented Saccharina japonica (Phaeophyta) improves neuritogenic activity and TMT-induced cognitive deficits in rats

  • Park, Hyun-Jung;Lee, Mi-Sook;Shim, Hyun Soo;Lee, Gyeong-Ran;Chung, Sun Yong;Kang, Young Mi;Lee, Bae-Jin;Seo, Yong Bae;Kim, Kyung Soo;Shim, Insop
    • ALGAE
    • /
    • 제31권1호
    • /
    • pp.73-84
    • /
    • 2016
  • Marine organisms are frequently used to be harmful and have lower side effects than synthetic drugs. The cognitive improving efficacy of gamma aminobutyric acid-enriched fermented Saccharina japonica (FSJ) on the memory deficient rats, which were induced by trimethyltin chloride (TMT), was investigated by assessing the Morris water maze test and by performing choline acetyltransferase (ChAT), cAMP response element binding protein (CREB), and brain derived neurotrophic factor (BDNF) immunohistochemistry. The neurite outgrowth of Neuro2a cells was assessed in order to examine the underlying mechanisms of the memory enhancing effects of FSJ. Treatment with FSJ tended to shorten the latency to find the platform in the acquisition test of the Morris water maze at the second and fourth day compared to the control group. In the probe trial, the FSJ treated group increased time spent in the target quadrant, compared to that of the control group. Consistent with the behavioral data, these treatments recovered the loss of ChAT, CREB, and BDNF immunepositive neurons in the hippocampus produced by TMT. Treatment with FSJ markedly stimulated neurite outgrowth of the Neuro2a cells as compared to that of the controls. These findings demonstrate that FSJ may be useful for improving the cognitive function via regulation of neurotrophic marker enzyme activity.

봉독(峰毒)이 Glioma Cell에 미치는 효과(效果) (Effects of Bee Venom on Glioma Cells)

  • 이주연;김인자;최방섭;김근우;구병수
    • 동의신경정신과학회지
    • /
    • 제19권3호
    • /
    • pp.117-127
    • /
    • 2008
  • Objective: Bee venom (BV) has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and relief of pain in Oriental medicine. The two main components of BV are melittin and phospholipase A2 (PLA2). Of these, melittin, the major active ingredient of BV, has been reported to induce apoptosis and to possess anti tumor effects. Several studies have established that the agents inducing apoptosis in target organs suppress tumorigenesis. As the other component, PLA2 has been reported to induce neurite outgrowth in PC12 cells. However, there was no report about proliferative effect of BV in neuronal cells. In order to examine the effect of BV on glioma cell, human glioma cell line, U87 was used. Methods: Analysis of proliferation was confirmed by MTT assay. BV increased cell number through dose and duration dependent manner and these effects are apparent at a concentration of 10 ug/ml. To observe which signaling molecules will be activated by BV, phosphorylation of Akt, MAPK, PYK2 or CREB were examined by Western blot analysis. To study the long term effect of BV in U87 cells, the image of cells treated with BV for 4 days were obtained. Results: The phosphorylation levels of PYK2 and Akt were increased at 5 min after addition of 10 ug/ml of BV and sustained to 2 hours. On the other hand, phosphorylation of MAPK and CREB were increased at 5 min, maximum at 10 min, and returned to 30 min. These imply that BV may activate two different signaling pathways, PYK2/Akt and MAPK/CREB. BV treated cells showed increased neurite number and length. Conclusion: These results propose that BV may induce differentiation as well as proliferation of U87 cells through the activation of PYK2/ Akt and MAPK/ CREB.

  • PDF

Monitoring the Differentiation and Migration Patterns of Neural Cells Derived from Human Embryonic Stem Cells Using a Microfluidic Culture System

  • Lee, Nayeon;Park, Jae Woo;Kim, Hyung Joon;Yeon, Ju Hun;Kwon, Jihye;Ko, Jung Jae;Oh, Seung-Hun;Kim, Hyun Sook;Kim, Aeri;Han, Baek Soo;Lee, Sang Chul;Jeon, Noo Li;Song, Jihwan
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.497-502
    • /
    • 2014
  • Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.