• Title/Summary/Keyword: neural-net control

Search Result 111, Processing Time 0.024 seconds

EXTRACTION OF THE LEAN TISSUE BOUNDARY OF A BEEF CARCASS

  • Lee, C. H.;H. Hwang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.715-721
    • /
    • 2000
  • In this research, rule and neuro net based boundary extraction algorithm was developed. Extracting boundary of the interest, lean tissue, is essential for the quality evaluation of the beef based on color machine vision. Major quality features of the beef are size, marveling state of the lean tissue, color of the fat, and thickness of back fat. To evaluate the beef quality, extracting of loin parts from the sectional image of beef rib is crucial and the first step. Since its boundary is not clear and very difficult to trace, neural network model was developed to isolate loin parts from the entire image input. At the stage of training network, normalized color image data was used. Model reference of boundary was determined by binary feature extraction algorithm using R(red) channel. And 100 sub-images(selected from maximum extended boundary rectangle 11${\times}$11 masks) were used as training data set. Each mask has information on the curvature of boundary. The basic rule in boundary extraction is the adaptation of the known curvature of the boundary. The structured model reference and neural net based boundary extraction algorithm was developed and implemented to the beef image and results were analyzed.

  • PDF

Computer Vision and Neuro- Net Based Automatic Grading of a Mushroom(Lentinus Edodes L.) (컴퓨터시각과 신경회로망에 의한 표고등급의 자동판정)

  • Hwang, Heon;Lee, Choongho;Han, Joonhyun
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.42-51
    • /
    • 1994
  • Visual features of a mushromm(Lentinus Edodes L.) are critical in sorting and grading as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. Though actions involved in human grading look simple, it decision making underneath the simple action comes from the result of the complex neural processing of visual image. Recently, an artificial neural network has drawn a great attention because of its functional capability as a partial substitute of the human brain. Since most agricultural products are not uniquely defined in its physical properties and do not have a well defined job structure, the neuro -net based computer visual information processing is the promising approach toward the automation in the agricultural field. In this paper, first, the neuro - net based classification of simple geometric primitives were done and the generalization property of the network was tested for degraded primitives. And then the neuro-net based grading system was developed for a mushroom. A computer vision system was utilized for extracting and quantifying the qualitative visual features of sampled mushrooms. The extracted visual features of sampled mushrooms and their corresponding grades were used as input/output pairs for training the neural network. The grading performance of the trained network for the mushrooms graded previously by the expert were also presented.

  • PDF

Prediction on the Proportioning of Concrete Mixes Using Neural Network (신경망기법을 사용한 콘크리트의 배합요소 추정)

  • Kim, Jong-In;Choi, Young-Wha;Kim, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.419-426
    • /
    • 2001
  • Concrete mix proportioning is a process of selecting the right combination of many materials such as cement, fine aggregates, coarse aggregates, water, and admixtures to make concrete satisfying for specification and cost. In determining proportioning of concrete mixes, code information, specification, and the experience of experts are needed. However, all factors regarding mix proportioning factor cannot be considered. Therefore, the final acceptance depends on concrete quality control test results. The proportioning of concrete mixes and the adjustments are somewhat complicated, time-consuming, and uncertain tasks. In this paper, as a tool to predict the factor of the proportioning of concrete mixes, an artificial neural network is used. To consider the varieties of material properties, the standard mixed table of two companies of ready mixed concrete are used. The results show that neural net works is successfully applied to the prediction of concrete mix proportioning factor.

  • PDF

Fault Detection of Propeller of an Overactuated Unmanned Surface Vehicle based on Convolutional Neural Network (합성곱신경망을 활용한 과구동기 시스템을 가지는 소형 무인선의 추진기 고장 감지)

  • Baek, Seung-dae;Woo, Joo-hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.125-133
    • /
    • 2022
  • This paper proposes a fault detection method for a Unmanned Surface Vehicle (USV) with overactuated system. Current status information for fault detection is expressed as a scalogram image. The scalogram image is obtained by wavelet-transforming the USV's control input and sensor information. The fault detection scheme is based on Convolutional Neural Network (CNN) algorithm. The previously generated scalogram data was transferred learning to GoogLeNet algorithm. The data are generated as scalogram images in real time, and fault is detected through a learning model. The result of fault detection is very robust and highly accurate.

A Call Admission Control Using Markovian Queueing Model for Multi-services Cognitive Radio Networks (멀티 서비스 무선 인지 망을 위한 마르코프 큐잉모델을 이용한 호 수락 제어)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.347-352
    • /
    • 2014
  • In this paper, we propose a Markovian queueing model(M/M/1)-based call admission control to reduce forced terminating rate of non-real secondary user's call for Multi-services Cognitive Radio Networks. A existing control has a problem that the forced terminating rate increases because of adopting a policy of spectrum priority allocation to real calls. In our scheme the rate can be reduced as the call that has no useful spectrum waits in a queue until getting an available spectrum. Our scheme use a neural-net based prediction of primary user's reappearance. Through the simulation, we analysis the call forced terminating rate, access delay and spectrum utilization efficiency, and then show that our scheme can more reduce the forced terminating rate of the call, compared to that of the existing algorithm.

Grading of Harvested 'Mihwang' Peach Maturity with Convolutional Neural Network (합성곱 신경망을 이용한 '미황' 복숭아 과실의 성숙도 분류)

  • Shin, Mi Hee;Jang, Kyeong Eun;Lee, Seul Ki;Cho, Jung Gun;Song, Sang Jun;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.270-278
    • /
    • 2022
  • This study was conducted using deep learning technology to classify for 'Mihwang' peach maturity with RGB images and fruit quality attributes during fruit development and maturation periods. The 730 images of peach were used in the training data set and validation data set at a ratio of 8:2. The remains of 170 images were used to test the deep learning models. In this study, among the fruit quality attributes, firmness, Hue value, and a* value were adapted to the index with maturity classification, such as immature, mature, and over mature fruit. This study used the CNN (Convolutional Neural Networks) models for image classification; VGG16 and InceptionV3 of GoogLeNet. The performance results show 87.1% and 83.6% with Hue left value in VGG16 and InceptionV3, respectively. In contrast, the performance results show 72.2% and 76.9% with firmness in VGG16 and InceptionV3, respectively. The loss rate shows 54.3% and 62.1% with firmness in VGG16 and InceptionV3, respectively. It considers increasing for adapting a field utilization with firmness index in peach.

Facial Point Classifier using Convolution Neural Network and Cascade Facial Point Detector (컨볼루셔널 신경망과 케스케이드 안면 특징점 검출기를 이용한 얼굴의 특징점 분류)

  • Yu, Je-Hun;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.241-246
    • /
    • 2016
  • Nowadays many people have an interest in facial expression and the behavior of people. These are human-robot interaction (HRI) researchers utilize digital image processing, pattern recognition and machine learning for their studies. Facial feature point detector algorithms are very important for face recognition, gaze tracking, expression, and emotion recognition. In this paper, a cascade facial feature point detector is used for finding facial feature points such as the eyes, nose and mouth. However, the detector has difficulty extracting the feature points from several images, because images have different conditions such as size, color, brightness, etc. Therefore, in this paper, we propose an algorithm using a modified cascade facial feature point detector using a convolutional neural network. The structure of the convolution neural network is based on LeNet-5 of Yann LeCun. For input data of the convolutional neural network, outputs from a cascade facial feature point detector that have color and gray images were used. The images were resized to $32{\times}32$. In addition, the gray images were made into the YUV format. The gray and color images are the basis for the convolution neural network. Then, we classified about 1,200 testing images that show subjects. This research found that the proposed method is more accurate than a cascade facial feature point detector, because the algorithm provides modified results from the cascade facial feature point detector.

Active Vibration Control of A Time-Varying Cantilever Beam Using Band Pass Filters and Artificial Neural Network (신경회로망과 능동대역필터를 이용한 시변 외팔보 능동 진동제어)

  • Hamm, Gil;Rhee, Huinam;Yoon, Doo Byung;Han, Soon Woo;Park, Jin Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.353-354
    • /
    • 2014
  • An active vibration control technique of a time-varying cantilever beam is proposed in this study. A simple in-house coil sensor instead of expensive commercial sensors was used to measure the vibrational displacement of the beam. Active band pass filters and artificial neutral net works detect the frequencies, amplitudes, and phases of the main vibration mode. The time constants of the low pass filter representing the positive position feedback controller are updated in real-time, which generates the control voltage input to actuate the piezoelectric actuator and suppress the vibration. An experiment was successfully performed to verify the algorithm for a cantilever beam, which fundamental natural frequency arbitrarily varies between 9 Hz ~ 18 Hz. The present active vibration suppression technique can be applied to variety of structures which undergoes large variation of dynamic characteristics while operating.

  • PDF

A Comparative Study of Alzheimer's Disease Classification using Multiple Transfer Learning Models

  • Prakash, Deekshitha;Madusanka, Nuwan;Bhattacharjee, Subrata;Park, Hyeon-Gyun;Kim, Cho-Hee;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.209-216
    • /
    • 2019
  • Over the past decade, researchers were able to solve complex medical problems as well as acquire deeper understanding of entire issue due to the availability of machine learning techniques, particularly predictive algorithms and automatic recognition of patterns in medical imaging. In this study, a technique called transfer learning has been utilized to classify Magnetic Resonance (MR) images by a pre-trained Convolutional Neural Network (CNN). Rather than training an entire model from scratch, transfer learning approach uses the CNN model by fine-tuning them, to classify MR images into Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal control (NC). The performance of this method has been evaluated over Alzheimer's Disease Neuroimaging (ADNI) dataset by changing the learning rate of the model. Moreover, in this study, in order to demonstrate the transfer learning approach we utilize different pre-trained deep learning models such as GoogLeNet, VGG-16, AlexNet and ResNet-18, and compare their efficiency to classify AD. The overall classification accuracy resulted by GoogLeNet for training and testing was 99.84% and 98.25% respectively, which was exceptionally more than other models training and testing accuracies.

Identification of primary input parameters affecting evacuation in ventilated main control room through CFAST simulations and application of a machine learning algorithm to replace CFAST model

  • Sumit Kumar Singh;Jinsoo Bae;Yu Zhang;Saerin Lim;Jongkook Heo;Seoung Bum Kim;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3717-3729
    • /
    • 2024
  • Accurately predicting evacuation time in a ventilated main control room (MCR) during fire emergencies is crucial for ensuring the safety of personnel at nuclear power plants. This study proposes to use neural networks alongside consolidated fire and smoke transport (CFAST) simulations to serve as a surrogate model for physics-based simulation tools. Our neural networks can promptly predict the evacuation time in MCRs, proving to be a valuable asset in fire emergencies and eliminating the need for time-consuming rollouts of the CFAST simulations. The CFAST model simulates fire and evacuation scenarios in a ventilated MCR with variations in input parameters such as door conditions, ventilation flow rate, leakage area, and fire propagation time. Target output parameters, such as hot gas layer temperature (HGLT), heat flux (HF), and optical density (OD), are used alongside standardized evacuation variables to train a machine learning model for predicting evacuation time. The findings suggest that high ventilation flow rates help to dilute smoke and discharge hot gas, leading to lower target output parameters and quicker evacuation. Standardized evacuation variables exceed the required abandonment criteria for all door conditions, indicating the importance of proper evacuation procedures. The results show that neural networks can generate evacuation times close to those obtained from CFAST simulations.