• Title/Summary/Keyword: neural-fuzzy

Search Result 1,531, Processing Time 0.023 seconds

Intelligent Control of Redundant Manipulator in an Environment with Obstacles (장애물이 있는 환경하에서 여유자유도 로보트의 지능제어 방법)

  • 현웅근;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.551-561
    • /
    • 1992
  • A neural optimization network and fuzzy rules are proposed to control the redundant robot manipulators in an environment with obstacle. A neural optimization network is employed to solve the optimization problem for resolved motion control of redundant robot manipulators in an environment with obstacle. The fuzzy rules are proposed to determine the weights of neural optimization networks to avoid the collision between robot manipulators and obstacle. The inputs of fuzzy rules are the resultant distance and change of the distance and sum of the changes by differential motion of each joint. And the output of fuzzy rules is defined as the capability of collision avoidance of joint differential motion. The weightings of neural optimization networks are adjusted according to the capability of collision aboidance of each joint. To show the validities of the proposed method, computer simulation results are illustrated for the redundant robot of the planar type with three degrees of freedom.

Time Delay Prediction of Networked Control Systems using Cascade Structures of Fuzzy Neural Networks (종속형 퍼지 뉴럴 네트워크를 이용한 네트워크 제어 시스템의 시간 지연 예측)

  • Lee, Cheol-Gyun;Han, Chang-Wook
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.899-903
    • /
    • 2019
  • In networked control systems, time-varying delay of the transmitting signal is inevitable. If the transmission delay is longer than the fixed sampling time, the system will be unstable. To solve this problem, this paper proposes the method to predict the delay using logic-based fuzzy neural networks, and the predicted time delay will be used as a sampling time in the networked control systems. To verify the effectiveness of the proposed method, the delay data collected from the real system are used to train and test the logic-based fuzzy neural networks.

Using Fuzzy Neural Network to Assess Network Video Quality

  • Shi, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2377-2389
    • /
    • 2022
  • At present people have higher and higher requirements for network video quality, but video quality will be impaired by various factors, so video quality assessment has become more and more important. This paper focuses on the video quality assessment method using different fuzzy neural networks. Firstly, the main factors that impair the video quality are introduced, such as unit time jamming times, average pause time, blur degree and block effect. Secondly, two fuzzy neural network models are used to build the objective assessment method. By adjusting the network structure to optimize the assessment model, the objective assessment value of video quality is obtained. Meanwhile the advantages and disadvantages of the two models are analysed. Lastly, the proposed method is compared with many recent related assessment methods. This paper will give the experimental results and the detail of assessment process.

Genetically Optimized Fuzzy Polynomial Neural Networks and Its Application to Multi-variable Software Process (유전론적 최적 퍼지 다항식 뉴럴네트워크와 다변수 소프트웨어 공정으로의 응용)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.152-154
    • /
    • 2005
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed genetic algorithms-based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

  • PDF

A Novel Soft Computing Technique for the Shortcoming of the Polynomial Neural Network

  • Kim, Dongwon;Huh, Sung-Hoe;Seo, Sam-Jun;Park, Gwi-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.189-200
    • /
    • 2004
  • In this paper, we introduce a new soft computing technique that dwells on the ideas of combining fuzzy rules in a fuzzy system with polynomial neural networks (PNN). The PNN is a flexible neural architecture whose structure is developed through the modeling process. Unfortunately, the PNN has a fatal drawback in that it cannot be constructed for nonlinear systems with only a small amount of input variables. To overcome this limitation in the conventional PNN, we employed one of three principal soft computing components such as a fuzzy system. As such, a space of input variables is partitioned into several subspaces by the fuzzy system and these subspaces are utilized as new input variables to the PNN architecture. The proposed soft computing technique is achieved by merging the fuzzy system and the PNN into one unified framework. As a result, we can find a workable synergistic environment and the main characteristics of the two modeling techniques are harmonized. Thus, the proposed method alleviates the problems of PNN while providing superb performance. Identification results of the three-input nonlinear static function and nonlinear system with two inputs will be demonstrated to demonstrate the performance of the proposed approach.

Adaptive Fuzzy-Neuro Controller for High Performance of Induction Motor (유도전동기의 고성능 제어를 위한 적응 퍼지-뉴로 제어기)

  • Choi, Jung-Sik;Nam, Su-Myung;Ko, Jae-Sub;Jung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.315-320
    • /
    • 2005
  • This paper is proposed adaptive fuzzy-neuro controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of nor measured between the motor speed and output of a reference model. The control performance of the adaptive fuzy-neuro controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Bankruptcy Prediction using Fuzzy Neural Networks (퍼지신경망을 이용한 기업부도예측)

  • 김경재;한인구
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.135-147
    • /
    • 2001
  • This study proposes bankruptcy prediction model using fuzzy neural networks. Neural networks offer preeminent learning ability but they are often confronted with the inconsistent and unpredictable performance for noisy financial data. The existence of continuous data and large amounts of records may pose a challenging task to explicit concepts extraction from the raw data due to the huge data space determined by continuous input variables. The attempt to solve this problem is to transform each input variable in a way which may make it easier fur neural network to develop a predictive relationship. One of the methods selected for this is to map each continuous input variable to a series of overlapping fuzzy sets. Appropriately transforming each of the inputs into overlapping fuzzy membership sets provides an isomorphic mapping of the data to properly constructed membership values, and as such, no information is lost. In addition, it is easier far neural network to identify and model high-order interactions when the data is transformed in this way. Experimental results show that fuzzy neural network outperforms conventional neural network for the prediction of corporate bankruptcy.

  • PDF

Design of Incremental FCM-based Recursive RBF Neural Networks Pattern Classifier for Big Data Processing (빅 데이터 처리를 위한 증분형 FCM 기반 순환 RBF Neural Networks 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1070-1079
    • /
    • 2016
  • In this paper, the design of recursive radial basis function neural networks based on incremental fuzzy c-means is introduced for processing the big data. Radial basis function neural networks consist of condition, conclusion and inference phase. Gaussian function is generally used as the activation function of the condition phase, but in this study, incremental fuzzy clustering is considered for the activation function of radial basis function neural networks, which could effectively do big data processing. In the conclusion phase, the connection weights of networks are given as the linear function. And then the connection weights are calculated by recursive least square estimation. In the inference phase, a final output is obtained by fuzzy inference method. Machine Learning datasets are employed to demonstrate the superiority of the proposed classifier, and their results are described from the viewpoint of the algorithm complexity and performance index.

Host Anomaly Detection of Neural Networks and Neural-fuzzy Techniques with Soundex Algorithm (사운덱스 알고리즘을 적용한 신경망라 뉴로-처지 기법의 호스트 이상 탐지)

  • Cha, Byung-Rae;Kim, Hyung-Jong;Park, Bong-Gu;Cho, Hyug-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.13-22
    • /
    • 2005
  • To improve the anomaly IDS using system calls, this study focuses on Neural Networks Learning using the Soundex algorithm which is designed to change feature selection and variable length data into a fixed length learning pattern. That is, by changing variable length sequential system call data into a fixed length behavior pattern using the Soundex algorithm, this study conducted neural networks learning by using a backpropagation algorithm with fuzzy membership function. The back-propagation neural networks and Neuro-Fuzzy technique are applied for anomaly intrusion detection of system calls using Sendmail Data of UNM to demonstrate its aspect of he complexity of time, space and MDL performance.

Estimation of residual stress in dissimilar metals welding using deep fuzzy neural networks with rule-dropout

  • Ji Hun Park;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4149-4157
    • /
    • 2024
  • Welding processes are used to connect several components in nuclear power plants. These welding processes can induce residual stress in welding joints, which has been identified as a significant factor in primary water stress corrosion cracking. Consequently, the assessment of welding residual stress plays a crucial role in determining the structural integrity of welded joints. In this study, a deep fuzzy neural networks (DFNN) with a rule-dropout method, which is an artificial intelligence (AI) method, was used to predict the residual stress of dissimilar metal welding. ABAQUS, a finite element analysis program, was used as the data collection tool to develop the AI model, and 6300 data instances were collected under 150 analysis conditions. A rule-dropout method and genetic algorithm were used to optimize the estimation performance of the DFNN model. DFNN with the rule-dropout model was compared to a deep neural network method, known as a general deep learning method, to evaluate the estimation performance of DFNN. In addition, a fuzzy neural network method and a cascaded support vector regression method conducted in previous studies were compared. Consequently, the estimation performance of the DFNN with the rule-dropout model was better than those of the comparison methods. The welding residual stress estimation results of this study are expected to contribute to the evaluation of the structural integrity of welded joints.