• 제목/요약/키워드: neural-fuzzy

Search Result 1,531, Processing Time 0.023 seconds

Adaptive Fuzzy Neural Control of Unknown Nonlinear Systems Based on Rapid Learning Algorithm

  • Kim, Hye-Ryeong;Kim, Jae-Hun;Kim, Euntai;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.95-98
    • /
    • 2003
  • In this paper, an adaptive fuzzy neural control of unknown nonlinear systems based on the rapid learning algorithm is proposed for optimal parameterization. We combine the advantages of fuzzy control and neural network techniques to develop an adaptive fuzzy control system for updating nonlinear parameters of controller. The Fuzzy Neural Network(FNN), which is constructed by an equivalent four-layer connectionist network, is able to learn to control a process by updating the membership functions. The free parameters of the AFN controller are adjusted on-line according to the control law and adaptive law for the purpose of controlling the plant track a given trajectory and it's initial values are off-line preprocessing, In order to improve the convergence of the learning process, we propose a rapid learning algorithm which combines the error back-propagation algorithm with Aitken's $\delta$$\^$2/ algorithm. The heart of this approach ls to reduce the computational burden during the FNN learning process and to improve convergence speed. The simulation results for nonlinear plant demonstrate the control effectiveness of the proposed system for optimal parameterization.

  • PDF

Design of Speed Controller of an Induction Motor Based on Fuzzy-Neural Network (퍼지-신경회로망에 근거한 유도전동기 속도 제어기 설계)

  • Choi, Sung-Dae;Ban, Gi-Jong;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.282-284
    • /
    • 2006
  • Generally PI controller is used to control the speed of an induction motor. It has the good performance of speed control in case of adjusting the control parameters. But it occurred the problem to change the control parameters in the change of operation condition. In order to solve this problem, Fuzzy control or Artificial neural network is introduced in the speed control of an induction motor. However, Fuzzy control have the problems as the difficulties to change the membership function and fuzzy rule and the remaining error. Also Neural network has the problem as the difficulties to analyze the behavior of inner part. Therefore, the study on the combination of two controller is proceeded. In this paper, Speed controller of an induction motor based fuzzy-neural network is proposed and the speed control of an induction motor is performed using the proposed controller. Through the experiment, the fast response and good stability of the proposed speed controller is proved.

  • PDF

Optimal Identification of Nonlinear Process Data Using GAs-based Fuzzy Polynomial Neural Networks (유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크를 이용한 비선형 공정데이터의 최적 동정)

  • Lee, In-Tae;Kim, Wan-Su;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.6-8
    • /
    • 2005
  • In this paper, we discuss model identification of nonlinear data using GAs-based Fuzzy Polynomial Neural Networks(GAs-FPNN). Fuzzy Polynomial Neural Networks(FPNN) is proposed model based Group Method Data Handling(GMDH) and Neural Networks(NNs). Each node of FPNN is expressed Fuzzy Polynomial Neuron(FPN). Network structure of nonlinear data is created using Genetic Algorithms(GAs) of optimal search method. Accordingly, GAs-FPNN have more inflexible than the existing models (in)from structure selecting. The proposed model select and identify its for optimal search of Genetic Algorithms that are no. of input variables, input variable numbers and consequence structures. The GAs-FPNN model is select tuning to input variable number, number of input variable and the last part structure through optimal search of Genetic Algorithms. It is shown that nonlinear data model design using Genetic Algorithms based FPNN is more usefulness and effectiveness than the existing models.

  • PDF

A Study on Mating Chamferless Parts by Integrating Fuzzy Set Tyeory and Neural Network (퍼지 및 신경회로망을 이용한 면취가 없는 부품의 자동결합작업에 관한 연구)

  • 박용길;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 1994
  • This paper presents an intelligent robotic control method for chamferless parts mating by integrating fuzzy control and neural network. The successful assembly task requires an extremely high position accuracy and a good knowledge of mating parts. However, conventional assembly method alone makes it difficult to achieve satisfactory assembly performance because of the complexity and the uncertainties of the process and its environments such as not only the limitation of the devices performing the assembly but also imperfect knowledge of the parts being assembled. To cope with these problems, an intelligent robotic assembly method is proposed, which is composed of fuzzy controller and learning mechanism based upon neural net. In this method, fuzzy controller copes with the complexity and the uncertainties of the assembly process, while neural network enhances the assembly scheme so as to learn fuzzy rules from experience and adapt to changes in environment of uncertainty and imprecision. The performance of the proposed assembly scheme is evaluted through a series of experiments using SCARA robot. The results show that the proposed control method can be effectively applied to chamferless precision parts mating.

Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks

  • Huang, Wei;Oh, Sung-Kwun;Zhang, Honghao
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.636-645
    • /
    • 2012
  • This study introduces an information granular-based fuzzy radial basis function neural networks (FRBFNN) based on multiobjective optimization and weighted least square (WLS). An improved multiobjective space search algorithm (IMSSA) is proposed to optimize the FRBFNN. In the design of FRBFNN, the premise part of the rules is constructed with the aid of Fuzzy C-Means (FCM) clustering while the consequent part of the fuzzy rules is developed by using four types of polynomials, namely constant, linear, quadratic, and modified quadratic. Information granulation realized with C-Means clustering helps determine the initial values of the apex parameters of the membership function of the fuzzy neural network. To enhance the flexibility of neural network, we use the WLS learning to estimate the coefficients of the polynomials. In comparison with ordinary least square commonly used in the design of fuzzy radial basis function neural networks, WLS could come with a different type of the local model in each rule when dealing with the FRBFNN. Since the performance of the FRBFNN model is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules and the orders of the polynomials present in the consequent parts of the rules, we carry out both structural as well as parametric optimization of the network. The proposed IMSSA that aims at the simultaneous minimization of complexity and the maximization of accuracy is exploited here to optimize the parameters of the model. Experimental results illustrate that the proposed neural network leads to better performance in comparison with some existing neurofuzzy models encountered in the literature.

Relations among the multidimensional linear interpolation fuzzy reasoning , and neural networks

  • Om, Kyong-Sik;Kim, Hee-Chan;Byoung-Goo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.562-567
    • /
    • 1998
  • This paper examined the relations among the multidimensional linear interpolation(MDI) and fuzzy reasoning , and neural networks, and showed that an showed that an MDI is a special form of Tsukamoto's fuzzy reasoning and regularization networks in the perspective of fuzzy reasoning and neural networks, respectively. For this purposes, we proposed a special Tsukamoto's membership (STM) systemand triangular basis function (TBF) networks, Also we verified the condition when our proposed TBF becomes a well-known radial basis function (RBF).

  • PDF

Evaluation System of Psychological Feelings for Corporate Identity Symbol Marks Using Fuzzy Neural Networks (퍼지 - 뉴럴네트워크를 이용한 CI 심벌마크의 감성평가시스템)

  • Chang, In-Seong;Park, Yong-Ju
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.305-314
    • /
    • 2001
  • In this paper, we construct an automatic evaluation system of psychological feeling for corporate identity (CI) symbol mark based on a fuzzy neural network technique. The system is modelled by trainable fuzzy inference rules with several input variables (qualitative and quantitative design components of CI symbol mark) and a single output variable (consumer's feeling). The back propagation learning algorithm, which is a conventional learning method of multilayer feedforward neural networks, is used for parameter identification of the fuzzy inference system. The learning ability to train data and the generalization ability to test data are evaluated for the proposed evaluation system by computer simulations.

  • PDF

Optimal Model Design of Software Process Using Genetically Fuzzy Polynomial Neyral Network (진화론적 퍼지 다항식 뉴럴 네트워크를 이용한 소프트웨어 공정의 최적 모델 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2873-2875
    • /
    • 2005
  • The optimal structure of the conventional Fuzzy Polynomial Neural Networks (FPNN)[3] depends on experience of designer. For the conventional Fuzzy Polynomial Neural Networks, input variable number, number of input variable, number of Membership Functions(MFs) and consequence structures are selected through the experience of a model designer iteratively. In this paper, we propose the new design methodology to find the optimal structure of Fuzzy Polymomial Neural Network by using Genetic Algorithms(GAs)[4, 5]. In the sequel, It is shown that the proposed Advanced Genetic Algorithms based Fuzzy Polynomial Neural Network(Advanced GAs-based FPNN) is more useful and effective than the existing models for nonlinear process. We used Medical Imaging System(MIS)[6] data to evaluate the performance of the proposed model.

  • PDF

Automatic Control of Coagulant Dosing Rate Using Self-Organizing Fuzzy Neural Network (자기조직형 Fuzzy Neural Network에 의한 응집제 투입률 자동제어)

  • 오석영;변두균
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1100-1106
    • /
    • 2004
  • In this report, a self-organizing fuzzy neural network is proposed to control chemical feeding, which is one of the most important problems in water treatment process. In the case of the learning according to raw water quality, the self-organizing fuzzy network, which can be driven by plant operator, is very effective, Simulation results of the proposed method using the data of water treatment plant show good performance. This algorithm is included to chemical feeder, which is composed of PLC, magnetic flow-meter and control valve, so the intelligent control of chemical feeding is realized.

Fuzzy-Neural Modeling of a Human Operator Control System (인간 운용자 제어시스템의 퍼지-뉴럴 모델링)

  • Lee, Seok-Jae;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.474-480
    • /
    • 2007
  • This paper presents an application of intelligent modeling method to manual control system with human operator. Human operator as a part of controller is difficult to be modeled because of changes in individual characteristics and operation environment. So in these situation, a fuzzy model developed relying on the expert's experiences or trial and error may not be acceptable. To supplement the fuzzy model block, a neural network based modeling error compensator is incorporated. The feasibility of the present fuzzy-neural modeling scheme has been investigated for the real human based target tracking system.