• 제목/요약/키워드: neural regeneration

검색결과 52건 처리시간 0.028초

Epigenetic Regulation of Axon Regeneration after Neural Injury

  • Shin, Jung Eun;Cho, Yongcheol
    • Molecules and Cells
    • /
    • 제40권1호
    • /
    • pp.10-16
    • /
    • 2017
  • When peripheral axons are damaged, neuronal injury signaling pathways induce transcriptional changes that support axon regeneration and consequent functional recovery. The recent development of bioinformatics techniques has allowed for the identification of many of the regeneration-associated genes that are regulated by neural injury, yet it remains unclear how global changes in transcriptome are coordinated. In this article, we review recent studies on the epigenetic mechanisms orchestrating changes in gene expression in response to nerve injury. We highlight the importance of epigenetic mechanisms in discriminating efficient axon regeneration in the peripheral nervous system and very limited axon regrowth in the central nervous system and discuss the therapeutic potential of targeting epigenetic regulators to improve neural recovery.

신경망을 이용한 세일링 요트 리제너레이션 시스템의 배터리 충전 예측 (Battery charge prediction of sailing yacht regeneration system using neural networks)

  • 이태희;황우성;최명렬
    • 디지털융복합연구
    • /
    • 제18권11호
    • /
    • pp.241-246
    • /
    • 2020
  • 본 논문에서는 해양 전기추진 시스템과 딥러닝 알고리즘을 융합하여 전기추진 리제너레이션 시스템에서 DC/DC 컨버터 출력 전류 예측 및 리제너레이션 수행 시 배터리 충전량을 예측하기 위해 신경망 모델을 제안한다. 제안 된 신경망을 실험하기 위해 PCM의 입력 전압과 전류를 측정하고 시제품 PCM 보드의 출력 결과를 통해 데이터 세트를 구성하였다. 또한 불충분 한 데이터 세트에서 학습 결과를 향상시키기 위해 기존 데이터 세트를 데이터 피팅하여 학습을 진행하였다. 학습 후 신경망 모델의 데이터 예측 결과와 실제 측정 데이터의 차이를 그래프를 통해 확인하였다. 제안한 신경망 모델은 입력 전압과 전류 변화에 따른 배터리 충전량 예측을 효율적으로 보여주었다. 또한, DC/DC 컨버터를 구성하는 아날로그 회로의 특성변화를 신경망을 통하여 예측함으로써, 리제너레이션 시스템의 설계 시, 아날로그 회로의 특성을 고려해야 할 것으로 판단된다.

Effect of Neurotrophic Factors on Neuronal Stem Cell Death

  • KimKwon, Yun-Hee
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.87-93
    • /
    • 2002
  • Neural cell survival is an essential concern in the aging brain and many diseases of the central nervous system. Neural transplantation of the stem cells are already applied to clinical trials for many degenerative neurological diseases, including Huntington's disease, Parkinson's disease, and strokes. A critical problem of the neural transplantation is how to reduce their apoptosis and improve cell survival. Neurotrophic factors generally contribute as extrinsic cues to promote cell survival of specific neurons in the developing mammalian brains, but the survival factor for neural stem cell is poorly defined. To understand the mechanism controlling stem cell death and improve cell survival of the transplanted stem cells, we investigated the effect of plausible neurotrophic factors on stem cell survival. The neural stem cell, HiB5, when treated with PDGF prior to transplantation, survived better than cells without PDGF. The resulting survival rate was two fold for four weeks and up to three fold for twelve weeks. When transplanted into dorsal hippocampus, they migrated along hippocampal alveus and integrated into pyramidal cell layers and dentate granule cell layers in an inside out sequence, which is perhaps the endogenous pathway that is similar to that in embryonic neurogenesis. Promotion of the long term-survival and differentiation of the transplanted neural precursors by PDGF may facilitate regeneration in the aging adult brain and probably in the injury sites of the brain.

등고선 정보로부터 3차원 지형정보의 실시간 복원을 위한 정보 확산 신경회로망 (The Information Diffusion Neural Networks for Real-Time Regeneration of 3-D Terrain Elevation Data with Contour Information)

  • 김종만;최종수;임영재;김홍갑;김형석;김성중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.968-970
    • /
    • 1995
  • The Information Diffusion Neural Networks is proposed to regenerate the 3-dimensional terrain elevation data from contour lines. Contours in paper map are an expression of terrain elevation in highly compressed form. A real time regeneration of terrain data for each grid points from the the contour information is required for various applications. In the proposed neural networks, the elevation information on contours is diffused to neighbor units through updating its output toward that of neighbor units. An interpolation of terrain information is achieved from such computation mechanithm. Terrain data regeneration simulation has been done with sampled terrain data on contour lines.

  • PDF

Neural Ablation and Regeneration in Pain Practice

  • Choi, Eun Ji;Choi, Yun Mi;Jang, Eun Jung;Kim, Ju Yeon;Kim, Tae Kyun;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • 제29권1호
    • /
    • pp.3-11
    • /
    • 2016
  • A nerve block is an effective tool for diagnostic and therapeutic methods. If a diagnostic nerve block is successful for pain relief and the subsequent therapeutic nerve block is effective for only a limited duration, the next step that should be considered is a nerve ablation or modulation. The nerve ablation causes iatrogenic neural degeneration aiming only for sensory or sympathetic denervation without motor deficits. Nerve ablation produces the interruption of axonal continuity, degeneration of nerve fibers distal to the lesion (Wallerian degeneration), and the eventual death of axotomized neurons. The nerve ablation methods currently available for resection/removal of innervation are performed by either chemical or thermal ablation. Meanwhile, the nerve modulation method for interruption of innervation is performed using an electromagnetic field of pulsed radiofrequency. According to Sunderland's classification, it is first and foremost suggested that current neural ablations produce third degree peripheral nerve injury (PNI) to the myelin, axon, and endoneurium without any disruption of the fascicular arrangement, perineurium, and epineurium. The merit of Sunderland's third degree PNI is to produce a reversible injury. However, its shortcoming is the recurrence of pain and the necessity of repeated ablative procedures. The molecular mechanisms related to axonal regeneration after injury include cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules, and their receptors. It is essential to establish a safe, long-standing denervation method without any complications in future practices based on the mechanisms of nerve degeneration as well as following regeneration.

가미신추보건탕(加味伸椎步建湯)이 PC12 세포의 재생에 미치는 영향 (Effects of Gamishinchubogun-tang on Regeneration of PC12 Cells)

  • 구지향;이치호;이은정
    • 혜화의학회지
    • /
    • 제25권1호
    • /
    • pp.37-44
    • /
    • 2016
  • Objectives : This study was designed to investigate the effect of Gamishinchubogun-tang (JiaweiShenzhuibujian-tang; GSB) on regeneration of PC12 cells. Methods : PC12 cells have been used extensively as a model for studying the cellular and molecular effects of neuronal cells. In order to check the effect of GSB on the regeneration of PC12 cells, the morphological change of PC12 cells were observed comparatively in GSB group and control group. Results : The significant changes in neurite length of PC12 cells have been observed on GSB group. In proportion to the concentration of GSB it was observed an increase in neurite outgrowth. Conclusions : This study confirmed that GSB made a significant influence on regeneration of PC12 cells.

Effects of Sagunjatang-Ga-Nokyong on Neurologic Recovery in Rats after Spinal Cord Injury

  • Kim, Hyun-Seok;Yoon, Il-Ji
    • 대한한의학회지
    • /
    • 제29권5호
    • /
    • pp.1-13
    • /
    • 2008
  • Objective : This study is investigate the effects of Sagunjatang-Ga-Nokyong(SGJ-NY) treatment on regenerative responses of corticospinal tract(CST) axons in the injured spinal cord. Methods :Using rats, we damaged their spinal cord, and then applied SGJ-NY extract to the lesion. Then we observed GAP-43 and NGF protein, astrcyte, axonal regeneration responses and axonal elongation. Result :Determination of GAP-43 and NGF protein levels were increased. And increased proliferation of astrocyte and enhanced processes in astrocytes were observed by SGJ-NY treatment. Higher number of astrocytes within the injury cavity in SGJ-NY treated group were showed, yet CSPG proteins were a weaker staining in the cavity in SGJ-NY. CST axons extended into the cavity and to the caudal area in SGJ-NY treated group were increased. Conclusion : SGJ-NY treatment might increase neural activity in the injured spinal cord tissue, and improved axonal regeneration responses. In this process, activation of astrocytes may play a role in promoting enhanced axonal elongation. the current study show that SGJ-NY exerts positive activity on inducing nerve regeneration responses by elevating neural tissue migration activities.

  • PDF

중추신경계의 재생에 관한 문헌고찰 (The Literature Review of Central nervous system regeneration)

  • 김동현;백수정;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제12권3호
    • /
    • pp.395-406
    • /
    • 2000
  • In general. it is known that central nervous system associated with nerve injury and regeneration in mature cann't regenerate, unlikely peripheral nervous system, due to various reasons. Although a lot of Patients arc suffered with central nervous system injury in the world, but there art a few resolution and researches and investigations. 'rho effect of central nervous system regeneration was partly revealed by many researchers. In this article, we describe about recovery (inclusive of axonal regeneration, remyelination, repair of spinal cord) and associated factors(inclusive of macrophage and autoimmune T-cell. neural stem cells. Nogo) after central nervous system injury.

  • PDF

Study of the planarian phototaxis during brain regeneration

  • Inoue, Takeshi;Kumamoto, Hiroshi;Cebria, Frances;Kobayashi, Chiyoko;Agata, Kiyokazu
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.287-289
    • /
    • 2002
  • Planarians show negative phototaxis and have extensive regenerative ability, including the ability to regenerate the brain. Recently the process of regeneration of the planarian brain has been divided into three steps based on the expression of neural markers. In this study, we have analyzed the process of recovery of the light response during head regeneration. Although morphological observations indicated that regeneration of the eyes and optic nerves appeared to be completed by the fourth day, the recovery of the evasion behavior against light was not recovered within 4 days after amputation. Functional recovery of the evasion behavior could be detected starting 5 days after amputation and then gradually recovered. We previously identified genes which are specifically expressed in the brain after the recovery of morphological structures. This characteristic suggested that these genes may be involved in functional recovery of the brain. To investigate the function of these genes, we performed gene knockout analysis using the RNA interference method. The results clearly indicated that these genes are involved in the functional recovery of the visual system.

  • PDF

신경가역성과 물리치료 (Neural Plasticity and Physical Therapy)

  • 김종만;권혁철
    • 대한물리치료과학회지
    • /
    • 제1권2호
    • /
    • pp.301-311
    • /
    • 1994
  • Most patients treated by physical therapists have suffered some neurological trauma resulting from disease or injury. The traditional teaching used to be that damage of central neurons is irreversible. However, it has been necessary to cast aside this traditional view because of accumulating evidence that the brain is endowed with remarkable plasticity. This paper reviews the literature relating to neuroplasticity within the brain and draws implications pertinent to physical therapy practice.

  • PDF