• Title/Summary/Keyword: neural networks technique

Search Result 532, Processing Time 0.023 seconds

Development of Predictive Models for Rights Issues Using Financial Analysis Indices and Decision Tree Technique (경영분석지표와 의사결정나무기법을 이용한 유상증자 예측모형 개발)

  • Kim, Myeong-Kyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.59-77
    • /
    • 2012
  • This study focuses on predicting which firms will increase capital by issuing new stocks in the near future. Many stakeholders, including banks, credit rating agencies and investors, performs a variety of analyses for firms' growth, profitability, stability, activity, productivity, etc., and regularly report the firms' financial analysis indices. In the paper, we develop predictive models for rights issues using these financial analysis indices and data mining techniques. This study approaches to building the predictive models from the perspective of two different analyses. The first is the analysis period. We divide the analysis period into before and after the IMF financial crisis, and examine whether there is the difference between the two periods. The second is the prediction time. In order to predict when firms increase capital by issuing new stocks, the prediction time is categorized as one year, two years and three years later. Therefore Total six prediction models are developed and analyzed. In this paper, we employ the decision tree technique to build the prediction models for rights issues. The decision tree is the most widely used prediction method which builds decision trees to label or categorize cases into a set of known classes. In contrast to neural networks, logistic regression and SVM, decision tree techniques are well suited for high-dimensional applications and have strong explanation capabilities. There are well-known decision tree induction algorithms such as CHAID, CART, QUEST, C5.0, etc. Among them, we use C5.0 algorithm which is the most recently developed algorithm and yields performance better than other algorithms. We obtained data for the rights issue and financial analysis from TS2000 of Korea Listed Companies Association. A record of financial analysis data is consisted of 89 variables which include 9 growth indices, 30 profitability indices, 23 stability indices, 6 activity indices and 8 productivity indices. For the model building and test, we used 10,925 financial analysis data of total 658 listed firms. PASW Modeler 13 was used to build C5.0 decision trees for the six prediction models. Total 84 variables among financial analysis data are selected as the input variables of each model, and the rights issue status (issued or not issued) is defined as the output variable. To develop prediction models using C5.0 node (Node Options: Output type = Rule set, Use boosting = false, Cross-validate = false, Mode = Simple, Favor = Generality), we used 60% of data for model building and 40% of data for model test. The results of experimental analysis show that the prediction accuracies of data after the IMF financial crisis (59.04% to 60.43%) are about 10 percent higher than ones before IMF financial crisis (68.78% to 71.41%). These results indicate that since the IMF financial crisis, the reliability of financial analysis indices has increased and the firm intention of rights issue has been more obvious. The experiment results also show that the stability-related indices have a major impact on conducting rights issue in the case of short-term prediction. On the other hand, the long-term prediction of conducting rights issue is affected by financial analysis indices on profitability, stability, activity and productivity. All the prediction models include the industry code as one of significant variables. This means that companies in different types of industries show their different types of patterns for rights issue. We conclude that it is desirable for stakeholders to take into account stability-related indices and more various financial analysis indices for short-term prediction and long-term prediction, respectively. The current study has several limitations. First, we need to compare the differences in accuracy by using different data mining techniques such as neural networks, logistic regression and SVM. Second, we are required to develop and to evaluate new prediction models including variables which research in the theory of capital structure has mentioned about the relevance to rights issue.

Illegal Cash Accommodation Detection Modeling Using Ensemble Size Reduction (신용카드 불법현금융통 적발을 위한 축소된 앙상블 모형)

  • Lee, Hwa-Kyung;Han, Sang-Bum;Jhee, Won-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.1
    • /
    • pp.93-116
    • /
    • 2010
  • Ensemble approach is applied to the detection modeling of illegal cash accommodation (ICA) that is the well-known type of fraudulent usages of credit cards in far east nations and has not been addressed in the academic literatures. The performance of fraud detection model (FDM) suffers from the imbalanced data problem, which can be remedied to some extent using an ensemble of many classifiers. It is generally accepted that ensembles of classifiers produce better accuracy than a single classifier provided there is diversity in the ensemble. Furthermore, recent researches reveal that it may be better to ensemble some selected classifiers instead of all of the classifiers at hand. For the effective detection of ICA, we adopt ensemble size reduction technique that prunes the ensemble of all classifiers using accuracy and diversity measures. The diversity in ensemble manifests itself as disagreement or ambiguity among members. Data imbalance intrinsic to FDM affects our approach for ICA detection in two ways. First, we suggest the training procedure with over-sampling methods to obtain diverse training data sets. Second, we use some variants of accuracy and diversity measures that focus on fraud class. We also dynamically calculate the diversity measure-Forward Addition and Backward Elimination. In our experiments, Neural Networks, Decision Trees and Logit Regressions are the base models as the ensemble members and the performance of homogeneous ensembles are compared with that of heterogeneous ensembles. The experimental results show that the reduced size ensemble is as accurate on average over the data-sets tested as the non-pruned version, which provides benefits in terms of its application efficiency and reduced complexity of the ensemble.

Automatic Classification Technique of Offence Patterns using Neural Networks in Soccer Game (뉴럴네트워크를 이용한 축구경기 공격패턴 자동분류에 관한 연구)

  • Kim, Hyun-Sook;Yoon, Ho-Sub;Hwang, Chong-Sun;Yang, Young-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.727-730
    • /
    • 2001
  • 멀티미디어 환경의 급속한 발전에 의해 영상처리 기술은 인간의 인체와 관련하여 얼굴인식, 제스처 인식에 관한 응용과 더불어 스포츠 관련분야로 깊숙히 정착하고 있다. 그러나 입력영상으로부터 움직이고 있는 선수들의 동작을 추출 및 추적하는 일은 컴퓨터비전 연구의 난 문제 중의 하나로 알려져 있다. 이러한 축구경기의 TV 중계에 있어서 하이라이트 장면의 자동추출(자동색인)은 그 경기의 가장 집약적인 표현이며, 축구경기 전체를 한 눈에 파악할 수 있도록 해주는 요약(summary)이자 intensive actions이고 경기의 진수이다. 따라서 축구경기와 같이 비교적 기 시간(대체로 1시간 30분) 동안 다수의 선수(양 팀 합해서 22명)들이 서로 복잡하게 뒤얽히면서 진행하는 경기의 하이라이트 장면을 효과적으로 포착하여 표현해 줄 수 있다면 TV를 통해서 경기를 관람하는 시청자들에게는 경기의 진행상황을 한 눈에 효과적으로 파악할 수 있게 해주어 흥미진진한 경기관람을 할 수 있게 해주고, 경기의 진행자들(감독, 코치, 선수 등)에게는 고차원적이고 과학적인 정보를 효과적으로 제공함으로써 한층 진보된 경기기법을 개발하고 과학적인 경기전략을 세울 수 있게 해준다. 본 논문은 이상과 같이 팀 스포츠(Team Spots)의 일종인 축구경기 하이라이트 장면의 자동색인을 위해 뉴럴네트워크 기법을 이용하여 그룹 포메이션(Group Formation) 중의 공격패턴 자동분류 기법을 개발하고 이를 검증하였다. 본 연구에서는 축구경기장 내의 빈번하게 변화하는 장면들을 자동으로 분할하여 대표 프레임을 선정하고, 대표 프레임 상에서 선수들의 위치정보와 공의 위치정보 등을 기초로 하여 경기 중에 이루어지는 선수들의 그룹 포메이션을 추적하여 그룹행동(group behavior)을 분석하고, 뉴럴네트워크의 BP(Back-Propagation) 알고리즘을 사용하여 축구경기 공격패턴을 자동으로 인식 및 분류함으로써 축구경기 하이라이트 장면의 자동추출을 위한 기반을 마련하였다. 본 연구의 실험에는 '98 프랑스 월드컵 축구경기의 다양한 공격패턴에 대한 비디오 영상에서 각각 좌측공격 60개, 우측공격 74개, 중앙공격 72개, 코너킥 39개, 프리킥 52개의 총 297개의 데이터를 추출하여 사용하였다. 실험과는 좌측공격 91.7%, 우측공격 100%, 중앙공격 87.5%, 코너킥 97.4%, 프리킥 75%로서 매우 양호한 인식율을 보였다.

  • PDF

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.

A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm (기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Yim, Min-Jin;Lee, Kyu-Beom;Oh, Young-Sup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.95-107
    • /
    • 2017
  • In this study, a preliminary study was undertaken for development of a tunnel incident automatic detection system based on a machine learning algorithm which is to detect a number of incidents taking place in tunnel in real time and also to be able to identify the type of incident. Two road sites where CCTVs are operating have been selected and a part of CCTV images are treated to produce sets of training data. The data sets are composed of position and time information of moving objects on CCTV screen which are extracted by initially detecting and tracking of incoming objects into CCTV screen by using a conventional image processing technique available in this study. And the data sets are matched with 6 categories of events such as lane change, stoping, etc which are also involved in the training data sets. The training data are learnt by a resilience neural network where two hidden layers are applied and 9 architectural models are set up for parametric studies, from which the architectural model, 300(first hidden layer)-150(second hidden layer) is found to be optimum in highest accuracy with respect to training data as well as testing data not used for training. From this study, it was shown that the highly variable and complex traffic and incident features could be well identified without any definition of feature regulation by using a concept of machine learning. In addition, detection capability and accuracy of the machine learning based system will be automatically enhanced as much as big data of CCTV images in tunnel becomes rich.

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.