• 제목/요약/키워드: neural network.

Search Result 11,709, Processing Time 0.038 seconds

Modular Neural Network Using Recurrent Neural Network (궤환 신경회로망을 사용한 모듈라 네트워크)

  • 최우경;김성주;서재용;전흥태
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1565-1568
    • /
    • 2003
  • In this paper, we propose modular network to solve difficult and complex problems that are seldom solved with multi-layer neural network. The structure of modular neural network in researched by Jacobs and Jordan is selected in this paper. Modular network consists of several expert networks and a gating network which is composed of single-layer neural network or multi-layer neural network. We propose modular network structure using recurrent neural network, since the state of the whole network at a particular time depends on an aggregate of previous states as well as on the current input. Finally, we show excellence of the proposed network compared with modular network.

  • PDF

Performance Analysis of Neural Network on Determining The Optimal Stand Management Regimes (임분의 적정 시업체계분석을 위한 Neural Network 기법의 적용성 검토)

  • Chung, Joo Sang;Roise, Joseph P.
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.1
    • /
    • pp.63-70
    • /
    • 1995
  • This paper discusses applications of neural network to stand stocking control problems. The scope of this research was to develop a neural network model for finding optimal stand management regimes and examining the performance of the model for field application. Performance was analyzed in consideration of the number of training examples and structural aspects of neural network. Research on network performance was based on extensive optimization studies for pure longleaf pine(Pinus palustris) stands. For experimental purposes. an existing nonlinear even-aged stand optimization model with a whole-stand growth and yield simulator was used to generate data samples required for the performance analysis.

  • PDF

Network Packet Classification Using Convolution Neural Network and Recurrent Neural Network (Convolution Neural Network와 Recurrent Neural Network를 활용한 네트워크 패킷 분류)

  • Lim, Hyun-Kyo;Kim, Ju-Bong;Han, Youn-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.16-18
    • /
    • 2018
  • 최근 네트워크 상에 새롭고 다양한 어플리케이션들이 생겨나면서 이에 따른 적절한 어플리케이션별 서비스 제공을 위한 패킷 분류 방법이 요구되고 있다. 이로 인하여 딥 러닝 기술이 발전 하면서 이를 이용한 네트워크 트래픽 분류 방법들이 제안되고 있다. 따라서, 본 논문에서는 딥 러닝 기술 중 Convolution Neural Network 와 Recurrent Neural Network 를 동시에 활용한 네트워크 패킷 분류 방법을 제안한다.

Nonlinear Controller Design by Hybrid Identification of Fuzzy-Neural Network and Neural Network (퍼지-신경회로망과 신경회로망의 혼합동정에 의한 비선형 제어기 설계)

  • 이용구;손동설;엄기환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.127-139
    • /
    • 1996
  • In this paper we propose a new controller design method using hybrid fuzzy-neural netowrk and neural network identification in order ot control systems which are more and more getting nonlinearity. Proposed method performs, for a nonlinear plant with unknown functions, hybird identification using a fuzzy-neural network and a neural network, and then a stable nonlinear controller is designed with those identified informations. To identify a nonlinear function, which is directly related to input signals, we can use a neural network which is satisfied with the proposed stable condition. To identify a nonlinear function, which is not directly related to input signals, we can use a fuzzy-neural network which has excellent identification characteristics. In order to verify excellent control performances of the proposed method, we compare the porposed control method with a conventional neural network control method through simulations and experiments with one link manipulator.

  • PDF

Object Recognition Using Neuro-Fuzzy Inference System (뉴로-퍼지 추론 시스템을 이용한 물체인식)

  • 김형근;최갑석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.5
    • /
    • pp.482-494
    • /
    • 1992
  • In this paper, the neuro-fuzzy inferene system for the effective object recognition is studied. The proposed neuro-fuzzy inference system combines learning capability of neural network with inference process of fuzzy theory, and the system executes the fuzzy inference by neural network automatically. The proposed system consists of the antecedence neural network, the consequent neural network, and the fuzzy operational part, For dissolving the ambiguity of recognition due to input variance in the neuro-fuzzy inference system, the antecedence’s fuzzy proposition of the inference rules are automatically produced by error back propagation learining rule. Therefore, when the fuzzy inference is made, the shape of membership functions os adaptively modified according to the variation. The antecedence neural netwerk constructs a separated MNN(Model Classification Neural Network)and LNN(Line segment Classification Neural Networks)for dissolving the degradation of recognition rate. The antecedence neural network can overcome the limitation of boundary decisoion characteristics of nrural network due to the similarity of extracted features. The increased recognition rate is gained by the consequent neural network which is designed to learn inference rules for the effective system output.

  • PDF

A QP Artificial Neural Network Inverse Kinematic Solution for Accurate Robot Path Control

  • Yildirim Sahin;Eski Ikbal
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.917-928
    • /
    • 2006
  • In recent decades, Artificial Neural Networks (ANNs) have become the focus of considerable attention in many disciplines, including robot control, where they can be used to solve nonlinear control problems. One of these ANNs applications is that of the inverse kinematic problem, which is important in robot path planning. In this paper, a neural network is employed to analyse of inverse kinematics of PUMA 560 type robot. The neural network is designed to find exact kinematics of the robot. The neural network is a feedforward neural network (FNN). The FNN is trained with different types of learning algorithm for designing exact inverse model of the robot. The Unimation PUMA 560 is a robot with six degrees of freedom and rotational joints. Inverse neural network model of the robot is trained with different learning algorithms for finding exact model of the robot. From the simulation results, the proposed neural network has superior performance for modelling complex robot's kinematics.

Using Structural Changes to support the Neural Networks based on Data Mining Classifiers: Application to the U.S. Treasury bill rates

  • Oh, Kyong-Joo
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.57-72
    • /
    • 2003
  • This article provides integrated neural network models for the interest rate forecasting using change-point detection. The model is composed of three phases. The first phase is to detect successive structural changes in interest rate dataset. The second phase is to forecast change-point group with data mining classifiers. The final phase is to forecast the interest rate with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the predictability of integrated neural network models to represent the structural change.

  • PDF

Learning Module Design for Neural Network Processor(ERNIE) (신경회로망칩(ERNIE)을 위한 학습모듈 설계)

  • Jung, Je-Kyo;Kim, Yung-Joo;Dong, Sung-Soo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.171-174
    • /
    • 2003
  • In this paper, a Learning module for a reconfigurable neural network processor(ERNIE) was proposed for an On-chip learning. The existing reconfigurable neural network processor(ERNIE) has a much better performance than the software program but it doesn't support On-chip learning function. A learning module which is based on Back Propagation algorithm was designed for a help of this weak point. A pipeline structure let the learning module be able to update the weights rapidly and continuously. It was tested with five types of alphabet font to evaluate learning module. It compared with C programed neural network model on PC in calculation speed and correctness of recognition. As a result of this experiment, it can be found that the neural network processor(ERNIE) with learning module decrease the neural network training time efficiently at the same recognition rate compared with software computing based neural network model. This On-chip learning module showed that the reconfigurable neural network processor(ERNIE) could be a evolvable neural network processor which can fine the optimal configuration of network by itself.

  • PDF

Design of Controller for Nonlinear System Using Modified Orthogonal Neural Network (수정된 직교 신경망을 이용한 비선형 시스템 제어기 설계)

  • Kim, Sung-Sik;Lee, Young-Seog;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.142-145
    • /
    • 1997
  • This paper presents an modified orthogonal neural network(MONN) based on orthogonal functions and applies the network to nonlinear system control. The accuracy of orthogonal neural network is essentially dependent on the choice of basic orthogonal functions. Modified orthogonal neural network is modified model of orthogonal neural network with input transformation to adapt its basic orthogonal functions. The results show that the modified orthogonal neural network has the excellent performance of approximating and controlling nonlinear systems and the input transformation make the ability of modified orthogoneural neural network better than one of orthogonal neural network.

  • PDF

Development and Speed Comparison of Convolutional Neural Network Using CUDA (CUDA를 이용한 Convolutional Neural Network의 구현 및 속도 비교)

  • Ki, Cheol-min;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.335-338
    • /
    • 2017
  • Currently Artificial Inteligence and Deep Learning are social issues, and These technologies are applied to various fields. A good method among the various algorithms in Artificial Inteligence is Convolutional Neural Network. Convolutional Neural Network is a form that adds convolution layers that extracts features by convolution operation on a general neural network method. If you use Convolutional Neural Network as small amount of data, or if the structure of layers is not complicated, you don't have to pay attention to speed. But the learning time is long as the size of the learning data is large and the structure of layers is complicated. So, GPU-based parallel processing is a lot. In this paper, we developed Convolutional Neural Network using CUDA and Learning speed is faster and more efficient than the method using the CPU.

  • PDF