• Title/Summary/Keyword: neural network training

Search Result 1,742, Processing Time 0.027 seconds

A Study on Fault Diagnosis in Face-Milling using Artificial Neural Network (인공신경망을 이용한 정면밀링에서 이상진단에 관한 연구)

  • Kim, Won-Il;Lee, Yun-Kyung;Wang, Dyuk-Hyun;Kang, Jae-Kwan;Kim, Byung-Chang;Lee, Kwan-Cheol;Jung, In-Ryung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.57-62
    • /
    • 2005
  • Neural networks, which have learning and self-organizing abilities, can be advantageously used in the pattern recognition. Neural network techniques have been widely used in monitoring and diagnosis, and compare favourable with traditional statistical pattern recognition algorithms, heuristic rule-based approaches, and fuzzy logic approaches. In this study the fault diagnosis of the face-milling using the artificial neural network was investigated. After training, the sample which measure load current was monitored by constant output results.

  • PDF

A Method for accelerating training of Convolutional Neural Network (합성곱 신경망의 학습 가속화를 위한 방법)

  • Choi, Se Jin;Jung, Jun Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.4
    • /
    • pp.171-175
    • /
    • 2017
  • Recently, Training of the convolutional neural network (CNN) entails many iterative computations. Therefore, a method of accelerating the training speed through parallel processing using the hardware specifications of GPGPU is actively researched. In this paper, the operations of the feature extraction unit and the classification unit are divided into blocks and threads of GPGPU and processed in parallel. Convolution and Pooling operations of the feature extraction unit are processed in parallel at once without sequentially processing. As a result, proposed method improved the training time about 314%.

MINERAL POTENTIAL MAPPING AND VERIFICATION OF LIMESTONE DEPOSITS USING GIS AND ARTIFICIAL NEURAL NETWORK IN THE GANGREUNG AREA, KOREA

  • Oh, Hyun-Joo;Lee, Sa-Ro
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.710-712
    • /
    • 2006
  • The aim of this study was to analyze limestone deposits potential using an artificial neural network and a Geographic Information System (GIS) environment to identify areas that have not been subjected to the same degree of exploration. For this, a variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential deposits in the Gangreung area, Korea. A spatial database considering deposit, topographic, geologic, geophysical and geochemical data was constructed for the study area using a GIS. The factors relating to 44 limestone deposits were the geological data, geochemical data and geophysical data. These factors were used with an artificial neural network to analyze mineral potential. Each factor’s weight was determined by the back-propagation training method. Training area was applied to analyze and verify the effect of training. Then the mineral deposit potential indices were calculated using the trained back-propagation weights, and potential map was constructed from GIS data. The mineral potential map was then verified by comparison with the known mineral deposit areas. The verification result gave accuracy of 87.31% for training area.

  • PDF

Development of the Expert System for Management on Slab Bridge Decks (슬래브교 상판의 전문가 시스템 개발)

  • Ahn, Young-Ki;Lee, Cheung-Bin;Yim, Jung-Soon;Lee, Jin-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.267-277
    • /
    • 2003
  • The purpose of this study makes a retrofit and rehabilitation practice trough the analysis and the improvement for the underlying problem of current retrofit and rehabilitation methods. Therefore, the deterioration process, the damage cause, the condition classification, the fatigue mechanism and the applied quantity of strengthening methods for slab bridge decks were analysed. Artificial neural networks are efficient computing techniqures that are widely used to solve complex problems in many fields. In this study, a back-propagation neural network model for estimating a management on existing slab bridge decks from damage cause, damage type, and integrity assessment at the initial stsge is need. The training and testing of the network were based on a database of 36. Four different network models werw used to study the ability of the neural network to predict the desirable output of increasing degree of accuracy. The neural networks is trained by modifying the weights of the neurons in response to the errors between the actual output values and the target output value. Training was done iteratively until the average sum squared errors over all the training patterms were minimized. This generally occurred after about 5,000 cycles of training.

Development of the Expert System for Management on Existing RC Bridge Decks (기존RC교량 바닥판의 유지관리를 위한 전문가 시스템 개발)

  • 손용우;강형구;이중빈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.227-236
    • /
    • 2002
  • The purpose of this study makes a retrofit and rehabilitation practice trough the analysis and the improvement for the underlying problem of current retrofit and rehabilitation methods. Therefore, the deterioration process, the damage cause, the condition classification, the fatigue mechanism and the applied quantity of strengthening methods for RC deck slabs were analyzed. Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this study, a back-propagation neural network model for estimating a management on existing reinforced concrete bridge decks from damage cause, damage type, and integrity assessment at the initial stage is need. The training and testing of the network were based on a database of 36. Four different network models were used to study the ability of the neural network to predict the desirable output of increasing degree of accuracy. The neural networks is trained by modifying the weights of the neurons in response to the errors between the actual output values and the target output value. Training was done iteratively until the average sum squared errors over all the training patterns were minimized. This generally occurred after about 5,000 cycles of training.

  • PDF

Development of a transfer learning based detection system for burr image of injection molded products (전이학습 기반 사출 성형품 burr 이미지 검출 시스템 개발)

  • Yang, Dong-Cheol;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2021
  • An artificial neural network model based on a deep learning algorithm is known to be more accurate than humans in image classification, but there is still a limit in the sense that there needs to be a lot of training data that can be called big data. Therefore, various techniques are being studied to build an artificial neural network model with high precision, even with small data. The transfer learning technique is assessed as an excellent alternative. As a result, the purpose of this study is to develop an artificial neural network system that can classify burr images of light guide plate products with 99% accuracy using transfer learning technique. Specifically, for the light guide plate product, 150 images of the normal product and the burr were taken at various angles, heights, positions, etc., respectively. Then, after the preprocessing of images such as thresholding and image augmentation, for a total of 3,300 images were generated. 2,970 images were separated for training, while the remaining 330 images were separated for model accuracy testing. For the transfer learning, a base model was developed using the NASNet-Large model that pre-trained 14 million ImageNet data. According to the final model accuracy test, the 99% accuracy in the image classification for training and test images was confirmed. Consequently, based on the results of this study, it is expected to help develop an integrated AI production management system by training not only the burr but also various defective images.

Analysis on Strategies for Modeling the Wave Equation with Physics-Informed Neural Networks (물리정보신경망을 이용한 파동방정식 모델링 전략 분석)

  • Sangin Cho;Woochang Choi;Jun Ji;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.114-125
    • /
    • 2023
  • The physics-informed neural network (PINN) has been proposed to overcome the limitations of various numerical methods used to solve partial differential equations (PDEs) and the drawbacks of purely data-driven machine learning. The PINN directly applies PDEs to the construction of the loss function, introducing physical constraints to machine learning training. This technique can also be applied to wave equation modeling. However, to solve the wave equation using the PINN, second-order differentiations with respect to input data must be performed during neural network training, and the resulting wavefields contain complex dynamical phenomena, requiring careful strategies. This tutorial elucidates the fundamental concepts of the PINN and discusses considerations for wave equation modeling using the PINN approach. These considerations include spatial coordinate normalization, the selection of activation functions, and strategies for incorporating physics loss. Our experimental results demonstrated that normalizing the spatial coordinates of the training data leads to a more accurate reflection of initial conditions in neural network training for wave equation modeling. Furthermore, the characteristics of various functions were compared to select an appropriate activation function for wavefield prediction using neural networks. These comparisons focused on their differentiation with respect to input data and their convergence properties. Finally, the results of two scenarios for incorporating physics loss into the loss function during neural network training were compared. Through numerical experiments, a curriculum-based learning strategy, applying physics loss after the initial training steps, was more effective than utilizing physics loss from the early training steps. In addition, the effectiveness of the PINN technique was confirmed by comparing these results with those of training without any use of physics loss.

THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LANDSLIDE SUSCEPTIBILITY MAPPING AT JANGHUNG, KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.294-297
    • /
    • 2004
  • The purpose of this study was to develop landslide susceptibility analysis techniques using artificial neural networks and then to apply these to the selected study area of Janghung in Korea. We aimed to verify the effect of data selection on training sites. Landslide locations were identified from interpretation of satellite images and field survey data, and a spatial database of the topography, soil, forest, and land use was constructed. Thirteen landslide-related factors were extracted from the spatial database. Using these factors, landslide susceptibility was analyzed using an artificial neural network. The weights of each factor were determined by the back-propagation training method. Five different training datasets were applied to analyze and verify the effect of training. Then, the landslide susceptibility indices were calculated using the trained back-propagation weights and susceptibility maps were constructed from Geographic Information System (GIS) data for the five cases. The results of the landslide susceptibility maps were verified and compared using landslide location data. GIS data were used to efficiently analyze the large volume of data, and the artificial neural network proved to be an effective tool to analyze landslide susceptibility.

  • PDF

Enhancement of Artillery Simulation Training System by Neural Network (신경망을 이용한 포병모의훈련체계 향상방안)

  • Ryu, Hai-Joon;Ko, Hyo-Heon;Kim, Ji-Hyun;Kim, Sung-Shick
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • A methodology for the improvement of simulation based training system for the artillery is proposed in this paper. The complex nonlinear relationship inherent among parameters in artillery firing is difficult to model and analyze. By introducing neural network based simulation, accurate representation of artillery firing is made possible. The artillery training system can greatly benefit from the improved prediction. Neural networks learning is conducted using the conjugate gradient algorithm. The evaluation of the proposed methodology is performed through simulation. Prediction errors of both regression analysis model and neural networks model are analyzed. Implementation of neural networks to training system enables more realistic training, improved combat power and reduced budget.

A Training Case Study of Deep Learning Artificial Neural Networks for Teacher Educations (교사교육을 위한 딥러닝 인공신경망 교육 사례 연구)

  • Hur, Kyeong
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.385-391
    • /
    • 2021
  • In this paper, a case of deep learning artificial neural network education was studied for artificial intelligence literacy education for preservice teachers and incumbent teachers. In addition, through the proposed educational case, we tried to explore the contents of artificial neural network principle education that elementary, middle and high school students can experience. To this end, first, an example of training on the principle of operation of an artificial neural network that recognizes two types of images is presented. And as an artificial neural network extension application education case, an artificial neural network education case for recognizing three types of images was presented. The number of output layers was changed according to the number of images to be recognized by the artificial neural network, and the cases implemented in a spreadsheet were divided and explained. In addition, in order to experience the operation results of the artificial neural network, we presented the educational contents to directly write the learning data necessary for the artificial neural network of the supervised learning method. In this paper, the implementation of the artificial neural network and the recognition test results are visually presented using a spreadsheet.

  • PDF