• 제목/요약/키워드: neural network model

검색결과 4,590건 처리시간 0.032초

이미지 라벨링을 이용한 적층제조 단면의 결함 분류 (Defect Classification of Cross-section of Additive Manufacturing Using Image-Labeling)

  • 이정성;최병주;이문구;김정섭;이상원;전용호
    • 한국기계가공학회지
    • /
    • 제19권7호
    • /
    • pp.7-15
    • /
    • 2020
  • Recently, the fourth industrial revolution has been presented as a new paradigm and additive manufacturing (AM) has become one of the most important topics. For this reason, process monitoring for each cross-sectional layer of additive metal manufacturing is important. Particularly, deep learning can train a machine to analyze, optimize, and repair defects. In this paper, image classification is proposed by learning images of defects in the metal cross sections using the convolution neural network (CNN) image labeling algorithm. Defects were classified into three categories: crack, porosity, and hole. To overcome a lack-of-data problem, the amount of learning data was augmented using a data augmentation algorithm. This augmentation algorithm can transform an image to 180 images, increasing the learning accuracy. The number of training and validation images was 25,920 (80 %) and 6,480 (20 %), respectively. An optimized case with a combination of fully connected layers, an optimizer, and a loss function, showed that the model accuracy was 99.7 % and had a success rate of 97.8 % for 180 test images. In conclusion, image labeling was successfully performed and it is expected to be applied to automated AM process inspection and repair systems in the future.

A new approach to estimate the factor of safety for rooted slopes with an emphasis on the soil property, geometry and vegetated coverage

  • Maedeh, Pouyan Abbasi;Wu, Wei;da Fonseca, Antonio Viana;Irdmoosa, Kourosh Ghaffari;Acharya, Madhu Sudan;Bodaghi, Ehsan
    • Advances in Computational Design
    • /
    • 제3권3호
    • /
    • pp.269-288
    • /
    • 2018
  • 180 different 2D numerical analyses have been carried out to estimate the factor of safety (FOS) for rooted slopes. Four different types of vegetated coverage and a variety of slope geometry considering three types of soil have been evaluated in this study. The highly influenced parameters on the slope's FOS are determined. They have been chosen as the input parameters for developing a new practical relationship to estimate the FOS with an emphasis on the roots effects. The dependency of sliding mode and shape considering the soil and roots-type has been evaluated by using the numerical finite element model. It is observed that the inclination and height of the slope and the coverage type are the most important effective factors in FOS. While the soil strength parameters and its physical properties would be considered as the second major group that affects the FOS. Achieved results from the developed relationship have shown the acceptable estimation for the roots slope. The extracted R square from the proposed relationship considering nonlinear estimation has been achieved up to 0.85. As a further cross check, the achieved R square from a multi-layer neural network has also been observed to be around 0.92. The numerical verification considering different scenarios has been done in the current evaluation.

Type-2 Fuzzy logic에 기반 한 고속 항공기의 횡 운동 제어 (Lateral Control of High Speed Flight Based on Type-2 Fuzzy Logic)

  • 송진환;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제23권5호
    • /
    • pp.479-486
    • /
    • 2013
  • 항공기의 제어 시스템 설계에 있어 두 가지 어려움이 있다. 즉 항공기의 동적 특성이 비선형 특성을 갖고 있고 그 파라미터 값들이 시간 혹은 비행 조건에 따라 변화하는 시변 특성을 갖고 있다는 점이다. 그럼에도 불구하고 고전적인 제어 이론을 활용한 신뢰성 높고 효율적인 제어 기법들이 계속 개발되어 왔으나 정확한 이론적 분석이 수반되지 않으면 항공기의 성능, 강건성, 그리고 안전성조차도 확보하기 어려운 문제점을 갖는다. 이에 최근에는 퍼지 논리, 신경망, 유전자 알고리즘으로 대표되는 지능 제어 기법을 활용한 항공기 제어 시스템 개발이 시도 되고 있다. 본 논문에서는 기존의 퍼지 논리가 갖고 있는 불확실성에 대한 취약점들을 크게 감소시킬 수 있는 Interval Type-2 퍼지 논리 이론을 기반으로 고속 항공기의 지능형 비행 횡 제어 시스템을 개발하고 컴퓨터 모의실험에 의해 그 효용성을 입증한다.

곡관부 하류에 핀휜이 부착된 회전 냉각유로의 최적설계 (Optimization of a Rotating Two-Pass Rectangular Cooling Channel with Staggered Arrays of Pin-Fins)

  • 문미애;김광용
    • 한국유체기계학회 논문집
    • /
    • 제13권5호
    • /
    • pp.43-53
    • /
    • 2010
  • This study investigates a design optimization of a rotating two-pass rectangular cooling channel with staggered arrays of pin-fins. The radial basis neural network method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The ratio of the diameter to height of the pin-fins and the ratio of the streamwise spacing between the pin-fins to height of the pin-fin are selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Results are presented for streamlines, velocity vector fields, and contours of Nusselt numbers, friction coefficients, and turbulent kinetic energy. These results show how fluid flow in a two-pass square cooling channel evolves a converted secondary flows due to Coriolis force, staggered arrays of pin-fins, and a $180^{\circ}$ turn region. These results describe how the fluid flow affects surface heat transfer. The Coriolis force induces heat transfer discrepancy between leading and trailing surfaces, having higher Nusselt number on the leading surface in the second pass while having lower Nusselt number on the trailing surface. Dean vortices generated in $180^{\circ}$ turn region augment heat transfer in the turning region and in the upstream region of the second pass. As the result of optimization, in comparison with the reference geometry, thermal performance of the optimum geometry shows the improvement by 30.5%. Through the optimization, the diameter of pin-fin increased by 14.9% and the streamwise distance between pin-fins increased by 32.1%. And, the value of objective function decreased by 18.1%.

기체크로마토그래피에서 QSRR을 통한 PAH 용리시간 예측 (Prediction of Gas Chromatographic Retention Times of PAH Using QSRR)

  • 김영구
    • 대한화학회지
    • /
    • 제45권5호
    • /
    • pp.422-428
    • /
    • 2001
  • 기체 크로마토그래피에서 PAH와 그것의 유도체들의 상대적 용리시간을 인공신경망분석과 다변량 선형 회귀분석을 사용하여 학습한 후, 시험세트들의 상대적 용리시간을 예측하였다. QSRR에서 PAH와 그것의 유도체의 주요한 설명인자는 분자량의 제곱근, 분자의 연결지수($^1{\chi}_v$), 분자 쌍극자모멘트 및 분자의 길이와 폭의 비율(L/B)이었다. 다변량선형회귀분석에 의하면 큰 분자일수록 용리시간은 길어지며 또한 L/B의 값이 커지면 용리시간이 증가하는 것으로 보아 슬롯이론을 따르고 있음을 알 수 있었다. 반면에 설명인자 사이의 선형 독립성에 영향을 받지 않는 인공신경망 분석결과에 의하면 분자량과 분자 쌍극자 모멘트가 주요한 인자로 작용하고 있었다. 시험세트의 예측 정확도를 나타내는 분산은 선형회귀분석에서는 1.860, 인공신경망분석법에서 0.206으로서 인공신경망 분석법이 다변량회귀분석보다 더 좋은 예측방법임을 알 수 있었다.

  • PDF

데이타마이닝을 이용(利用)한 CRM 사례연구(事例硏究) - A 패션기업(企業)을 중심(中心)으로 - (A CRM Study on the Using of Data Mining - Focusing on the "A" Fashion Company -)

  • 이유순
    • 패션비즈니스
    • /
    • 제6권5호
    • /
    • pp.136-150
    • /
    • 2002
  • In this study, we proposed a method to be standing customers as the supporting system for the improvement of fashion garment industry which was the marginal growth getting into full maturity of market. As for the customer creation method of Fashion garment company is developing a marketing program to be standing customer as customer scoring to estimate a existing customer‘s buying power, and figure out minimum fixed sales of company to use a future purchasing predict. This study was a result of data from total sixty thousands data to be created for the 11 months from september. 2000 to July. 2001. The data is part of which the company leading the Korean fashion garment industry has a lot of a customer purchasing history data. But this study used only 48,845 refined purchased data to discriminate from sixty thousands data and 21,496 customer case with the exception of overlapping purchased data among of those. The software used to handle sixty thousands data was SAS e-miner. As the analysis process is put in to operation the analysis of the purchasing customer’s profile firstly, and the second come into basket analysis to consider the buying associations for Association goods, the third estimate the customer grade of Customer loyalty by 3 ways of logit regression analysis, decision tree, Artificial Neural Network. The result suggested a method to be estimate the customer loyalty as 3 independent variables, 2 coefficients. The 3 independent variables are total purchasing amount, purchasing items per one purchase, payment amount by one purchasing item. The 2 coefficients are royal and normal for customer segmentation. The result was that this model use a logit regression analysis was valid as the method to be estimate the customer loyalty.

스키드마크 및 요마크를 이용한 차량사고재구성 (The Vehicle Accident Reconstruction using Skid and Yaw Marks)

  • 이승종;하정섭
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.55-63
    • /
    • 2003
  • The traffic accident is the prerequisite of the traffic accident reconstruction. In this study, the traffic accident (forward collision) and traffic accident reconstruction (inverse collision) simulations are conducted to improve the quality and accuracy of the traffic accident reconstruction. The vehicle and tire models are used to simulate the trajectories for the post-impact motion of the vehicles after collision. The impact dynamic model applicable to the forward and inverse collision simulations is also provided. The accuracy of impact analysis for the vehicular collision depends on the accuracy of the coefficients of restitution and friction. The neural network is used to estimate these coefficients. The forward and inverse collision simulations for the multi-collisions are conducted. The new method fur the accident reconstruction is proposed to calculate the pre-impact velocities of the vehicles without using the trial and error process which requires the repeated calculations of the initial velocities until the forward collision simulation satisfies with the accident evidences. This method estimates the pre-impact velocities of the vehicles by analyzing the trajectories of the vehicles. The vehicle slides on a road surface not only under the skidding during an emergency braking but also under the steering. A vehicle over steering or cornering with excessive speed loses the traction and leaves tile yaw marks on the road surface. The new critical speed formula based on the vehicle dynamics is proposed to analyze the yaw marks and shows smaller errors than ones of the existing critical speed formula.

TOPSIS와 전산직교배열을 적용한 자동차 로워암의 다수준 형상최적설계 (Multi-level Shape Optimization of Lower Arm by using TOPSIS and Computational Orthogonal Array)

  • 이광기;한승호
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.482-489
    • /
    • 2011
  • In practical design process, designer needs to find an optimal solution by using full factorial discrete combination, rather than by using optimization algorithm considering continuous design variables. So, ANOVA(Analysis of Variance) based on an orthogonal array, i.e. Taguchi method, has been widely used in most parts of industry area. However, the Taguchi method is limited for the shape optimization by using CAE, because the multi-level and multi-objective optimization can't be carried out simultaneously. In this study, a combined method was proposed taking into account of multi-level computational orthogonal array and TOPSIS(Technique for Order preference by Similarity to Ideal Solution), which is known as a classical method of multiple attribute decision making and enables to solve various decision making or selection problems in an aspect of multi-objective optimization. The proposed method was applied to a case study of the multi-level shape optimization of lower arm used to automobile parts, and the design space was explored via an efficient application of the related CAE tools. The multi-level shape optimization was performed sequentially by applying both of the neural network model generated from seven-level four-factor computational orthogonal array and the TOPSIS. The weight and maximum stress of the lower arm, as the objective functions for the multi-level shape optimization, showed an improvement of 0.07% and 17.89%, respectively. In addition, the number of CAE carried out for the shape optimization was only 55 times in comparison to full factorial method necessary to 2,401 times.

단기 물 수요예측 시뮬레이터 개발과 예측 알고리즘 성능평가 (Development of Water Demand Forecasting Simulator and Performance Evaluation)

  • 신강욱;김주환;양재린;홍성택
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.581-589
    • /
    • 2011
  • Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.

Image Quality Assessment by Combining Masking Texture and Perceptual Color Difference Model

  • Tang, Zhisen;Zheng, Yuanlin;Wang, Wei;Liao, Kaiyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.2938-2956
    • /
    • 2020
  • Objective image quality assessment (IQA) models have been developed by effective features to imitate the characteristics of human visual system (HVS). Actually, HVS is extremely sensitive to color degradation and complex texture changes. In this paper, we firstly reveal that many existing full reference image quality assessment (FR-IQA) methods can hardly measure the image quality with contrast and masking texture changes. To solve this problem, considering texture masking effect, we proposed a novel FR-IQA method, called Texture and Color Quality Index (TCQI). The proposed method considers both in the masking effect texture and color visual perceptual threshold, which adopts three kinds of features to reflect masking texture, color difference and structural information. Furthermore, random forest (RF) is used to address the drawbacks of existing pooling technologies. Compared with other traditional learning-based tools (support vector regression and neural network), RF can achieve the better prediction performance. Experiments conducted on five large-scale databases demonstrate that our approach is highly consistent with subjective perception, outperforms twelve the state-of-the-art IQA models in terms of prediction accuracy and keeps a moderate computational complexity. The cross database validation also validates our approach achieves the ability to maintain high robustness.