• 제목/요약/키워드: neural network learning

검색결과 4,140건 처리시간 0.032초

Patterns recognition via artificial neural network systems

  • Sugisaka, M.;Sagara, S.;Ueno, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.929-932
    • /
    • 1990
  • This paper considers the problem of patterns recognition using the artificial neural network systems. The artificial neural network systems provide an effective tool for classifying patterns and/or characters by learning them in a certain repeated hashion. The mechanism of the learning process and the structure of neural network systems used are main concerns in the accurate and fast classification of the patterns which are slightly different each other. The neural network system employed in this study has three layers structure which is composed of input, intermidiate, and output layers. Our main concern is to develope an effective learning mechanism how to learn the patterns fastly and accurately. The experimental study performed shows that there exists an effective learning method to get higher recognition ratio in classifying the several different patterns by artificial neural network system constructed.

  • PDF

CUDA를 이용한 Convolutional Neural Network의 효율적인 구현 (Efficient Implementation of Convolutional Neural Network Using CUDA)

  • 기철민;조태훈
    • 한국정보통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1143-1148
    • /
    • 2017
  • 현재 인공지능과 딥 러닝이 사회적인 이슈로 떠오르고 있는 추세이며, 다양한 분야에 이 기술들을 응용하고 있다. 인공지능 분야의 여러 알고리즘들 중에서 각광받는 방법 중 하나는 Convolutional Neural Network이다. Convolutional Neural Network를 적은 양의 데이터에서 이용하거나, Layer의 구조가 복잡하지 않은 경우에는 학습시간이 길지 않아 속도에 크게 신경 쓰지 않아도 되지만, 학습 데이터의 크기가 크고, Layer의 구조가 복잡할수록 학습시간이 상당히 오래 걸린다. 이로 인해 GPU를 이용하여 병렬처리를 하는 방법을 많이 사용하는데, 본 논문에서는 CUDA를 이용한 Convolutional Neural Network를 구현하였으며, 비교에 사용한 Framework/Program들 보다 학습속도가 빨라지고 큰 데이터를 학습 시키는데 더욱 효율적으로 진행하도록 한다.

Traffic-based reinforcement learning with neural network algorithm in fog computing environment

  • Jung, Tae-Won;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권1호
    • /
    • pp.144-150
    • /
    • 2020
  • Reinforcement learning is a technology that can present successful and creative solutions in many areas. This reinforcement learning technology was used to deploy containers from cloud servers to fog servers to help them learn the maximization of rewards due to reduced traffic. Leveraging reinforcement learning is aimed at predicting traffic in the network and optimizing traffic-based fog computing network environment for cloud, fog and clients. The reinforcement learning system collects network traffic data from the fog server and IoT. Reinforcement learning neural networks, which use collected traffic data as input values, can consist of Long Short-Term Memory (LSTM) neural networks in network environments that support fog computing, to learn time series data and to predict optimized traffic. Description of the input and output values of the traffic-based reinforcement learning LSTM neural network, the composition of the node, the activation function and error function of the hidden layer, the overfitting method, and the optimization algorithm.

신경망 학습에서 프라이버시 이슈 및 대응방법 분석 (Analysis of privacy issues and countermeasures in neural network learning)

  • 홍은주;이수진;홍도원;서창호
    • 디지털융복합연구
    • /
    • 제17권7호
    • /
    • pp.285-292
    • /
    • 2019
  • PC, SNS, IoT의 대중화로 수많은 데이터가 생성되고 그 양은 기하급수적으로 증가하고 있다. 거대한 양의 데이터를 활용하는 방법으로 인공신경망 학습은 최근 많은 분야에서 주목받는 주제이다. 인공신경망 학습은 음성인식, 이미지 인식에서 엄청난 잠재력을 보였으며 더 나아가 의료진단, 인공지능 게임 및 얼굴인식 등 다양하고 복잡한 곳에 광범위하게 적용된다. 인공신경망의 결과는 실제 인간을 능가할 정도로 정확성을 보이고 있다. 이러한 많은 이점에도 불구하고 인공신경망 학습에는 여전히 프라이버시 문제가 존재한다. 인공신경망 학습을 위한 학습 데이터에는 개인의 민감한 정보를 포함한 다양한 정보가 포함되어 악의적인 공격자로 인해 프라이버시가 노출될 수 있다. 공격자가 학습하는 도중 개입하여 학습이 저하되거나 학습이 완료된 모델을 공격할 때 발생하는 프라이버시 위험이 있다. 본 논문에서는 최근 제안된 신경망 모델의 공격 기법과 그에 따른 프라이버시 보호 방법을 분석한다.

Heart Attack Prediction using Neural Network and Different Online Learning Methods

  • Antar, Rayana Khaled;ALotaibi, Shouq Talal;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.77-88
    • /
    • 2021
  • Heart Failure represents a critical pathological case that is challenging to predict and discover at an early age, with a notable increase in morbidity and mortality. Machine Learning and Neural Network techniques play a crucial role in predicting heart attacks, diseases and more. These techniques give valuable perspectives for clinicians who may then adjust their diagnosis for each individual patient. This paper evaluated neural network models for heart attacks predictions. Several online learning methods were investigated to automatically and accurately predict heart attacks. The UCI dataset was used in this work to train and evaluate First Order and Second Order Online Learning methods; namely Backpropagation, Delta bar Delta, Levenberg Marquardt and QuickProp learning methods. An optimizer technique was also used to minimize the random noise in the database. A regularization concept was employed to further improve the generalization of the model. Results show that a three layers' NN model with a Backpropagation algorithm and Nadam optimizer achieved a promising accuracy for the heart attach prediction tasks.

Design Of Intrusion Detection System Using Background Machine Learning

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.149-156
    • /
    • 2019
  • The existing subtract image based intrusion detection system for CCTV digital images has a problem that it can not distinguish intruders from moving backgrounds that exist in the natural environment. In this paper, we tried to solve the problems of existing system by designing real - time intrusion detection system for CCTV digital image by combining subtract image based intrusion detection method and background learning artificial neural network technology. Our proposed system consists of three steps: subtract image based intrusion detection, background artificial neural network learning stage, and background artificial neural network evaluation stage. The final intrusion detection result is a combination of result of the subtract image based intrusion detection and the final intrusion detection result of the background artificial neural network. The step of subtract image based intrusion detection is a step of determining the occurrence of intrusion by obtaining a difference image between the background cumulative average image and the current frame image. In the background artificial neural network learning, the background is learned in a situation in which no intrusion occurs, and it is learned by dividing into a detection window unit set by the user. In the background artificial neural network evaluation, the learned background artificial neural network is used to produce background recognition or intrusion detection in the detection window unit. The proposed background learning intrusion detection system is able to detect intrusion more precisely than existing subtract image based intrusion detection system and adaptively execute machine learning on the background so that it can be operated as highly practical intrusion detection system.

오차 자기 순환 신경회로망을 이용한 현가시스템 인식과 슬라이딩 모드 제어기 개발 (Identification of suspension systems using error self recurrent neural network and development of sliding mode controller)

  • 송광현;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.625-628
    • /
    • 1997
  • In this paper the new neural network and sliding mode suspension controller is proposed. That neural network is error self-recurrent neural network. For fast on-line learning, this paper use recursive least squares method. A new neural networks converges considerably faster than the backpropagation algorithm and has advantages of being less affected by the poor initial weights and learning rate. The controller for suspension systems is designed according to sliding mode technique based on new proposed neural network.

  • PDF

유전 알고리즘 기반의 심층 학습 신경망 구조와 초모수 최적화 (Genetic algorithm based deep learning neural network structure and hyperparameter optimization)

  • 이상협;강도영;박장식
    • 한국멀티미디어학회논문지
    • /
    • 제24권4호
    • /
    • pp.519-527
    • /
    • 2021
  • Alzheimer's disease is one of the challenges to tackle in the coming aging era and is attempting to diagnose and predict through various biomarkers. While the application of various deep learning-based technologies as powerful imaging technologies has recently expanded across the medical industry, empirical design is not easy because there are various deep earning neural networks architecture and categorical hyperparameters that rely on problems and data to solve. In this paper, we show the possibility of optimizing a deep learning neural network structure and hyperparameters for Alzheimer's disease classification in amyloid brain images in a representative deep earning neural networks architecture using genetic algorithms. It was observed that the optimal deep learning neural network structure and hyperparameter were chosen as the values of the experiment were converging.

Deep Learning을 위한 GPGPU 기반 Convolution 가속기 구현 (An Implementation of a Convolutional Accelerator based on a GPGPU for a Deep Learning)

  • 전희경;이광엽;김치용
    • 전기전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.303-306
    • /
    • 2016
  • 본 논문에서는 GPGPU를 활용하여 Convolutional neural network의 가속화 방법을 제안한다. Convolutional neural network는 이미지의 특징 값을 학습하여 분류하는 neural network의 일종으로 대량의 데이터를 학습해야하는 영상 처리에 적합하다. 기존의 Convolutional neural network의 convolution layer는 다수의 곱셈 연산을 필요로 하여 임베디드 환경에서 실시간으로 동작하기에 어려움이 있다. 본 논문에서는 이러한 단점을 해결하기 위하여 winograd convolution 연산을 통하여 곱셈 연산을 줄이고 GPGPU의 SIMT 구조를 활용하여 convolution 연산을 병렬 처리한다. 실험은 ModelSim, TestDrive를 사용하여 진행하였고 실험 결과 기존의 convolution 연산보다 처리 시간이 약 17% 개선되었다.

A Learning Algorithm of Fuzzy Neural Networks Using a Shape Preserving Operation

  • Lee, Jun-Jae;Hong, Dug-Hun;Hwang, Seok-Yoon
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권2호
    • /
    • pp.131-138
    • /
    • 1998
  • We derive a back-propagation learning algorithm of fuzzy neural networks using fuzzy operations, which preserves the shapes of fuzzy numbers, in order to utilize fuzzy if-then rules as well as numerical data in the learning of neural networks for classification problems and for fuzzy control problems. By introducing the shape preseving fuzzy operation into a neural network, the proposed network simplifies fuzzy arithmetic operations of fuzzy numbers with exact result in learning the network. And we illustrate our approach by computer simulations on numerical examples.

  • PDF