• Title/Summary/Keyword: neural network classification

Search Result 1,750, Processing Time 0.028 seconds

Automatic Detection and Classification of Rib Fractures on Thoracic CT Using Convolutional Neural Network: Accuracy and Feasibility

  • Qing-Qing Zhou;Jiashuo Wang;Wen Tang;Zhang-Chun Hu;Zi-Yi Xia;Xue-Song Li;Rongguo Zhang;Xindao Yin;Bing Zhang;Hong Zhang
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.869-879
    • /
    • 2020
  • Objective: To evaluate the performance of a convolutional neural network (CNN) model that can automatically detect and classify rib fractures, and output structured reports from computed tomography (CT) images. Materials and Methods: This study included 1079 patients (median age, 55 years; men, 718) from three hospitals, between January 2011 and January 2019, who were divided into a monocentric training set (n = 876; median age, 55 years; men, 582), five multicenter/multiparameter validation sets (n = 173; median age, 59 years; men, 118) with different slice thicknesses and image pixels, and a normal control set (n = 30; median age, 53 years; men, 18). Three classifications (fresh, healing, and old fracture) combined with fracture location (corresponding CT layers) were detected automatically and delivered in a structured report. Precision, recall, and F1-score were selected as metrics to measure the optimum CNN model. Detection/diagnosis time, precision, and sensitivity were employed to compare the diagnostic efficiency of the structured report and that of experienced radiologists. Results: A total of 25054 annotations (fresh fracture, 10089; healing fracture, 10922; old fracture, 4043) were labelled for training (18584) and validation (6470). The detection efficiency was higher for fresh fractures and healing fractures than for old fractures (F1-scores, 0.849, 0.856, 0.770, respectively, p = 0.023 for each), and the robustness of the model was good in the five multicenter/multiparameter validation sets (all mean F1-scores > 0.8 except validation set 5 [512 x 512 pixels; F1-score = 0.757]). The precision of the five radiologists improved from 80.3% to 91.1%, and the sensitivity increased from 62.4% to 86.3% with artificial intelligence-assisted diagnosis. On average, the diagnosis time of the radiologists was reduced by 73.9 seconds. Conclusion: Our CNN model for automatic rib fracture detection could assist radiologists in improving diagnostic efficiency, reducing diagnosis time and radiologists' workload.

Anomaly Detection of Generative Adversarial Networks considering Quality and Distortion of Images (이미지의 질과 왜곡을 고려한 적대적 생성 신경망과 이를 이용한 비정상 검출)

  • Seo, Tae-Moon;Kang, Min-Guk;Kang, Dong-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.171-179
    • /
    • 2020
  • Recently, studies have shown that convolution neural networks are achieving the best performance in image classification, object detection, and image generation. Vision based defect inspection which is more economical than other defect inspection, is a very important for a factory automation. Although supervised anomaly detection algorithm has far exceeded the performance of traditional machine learning based method, it is inefficient for real industrial field due to its tedious annotation work, In this paper, we propose ADGAN, a unsupervised anomaly detection architecture using the variational autoencoder and the generative adversarial network which give great results in image generation task, and demonstrate whether the proposed network architecture identifies anomalous images well on MNIST benchmark dataset as well as our own welding defect dataset.

Performance Analysis of Hint-KD Training Approach for the Teacher-Student Framework Using Deep Residual Networks (딥 residual network를 이용한 선생-학생 프레임워크에서 힌트-KD 학습 성능 분석)

  • Bae, Ji-Hoon;Yim, Junho;Yu, Jaehak;Kim, Kwihoon;Kim, Junmo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.35-41
    • /
    • 2017
  • In this paper, we analyze the performance of the recently introduced Hint-knowledge distillation (KD) training approach based on the teacher-student framework for knowledge distillation and knowledge transfer. As a deep neural network (DNN) considered in this paper, the deep residual network (ResNet), which is currently regarded as the latest DNN, is used for the teacher-student framework. Therefore, when implementing the Hint-KD training, we investigate the impact on the weight of KD information based on the soften factor in terms of classification accuracy using the widely used open deep learning frameworks, Caffe. As a results, it can be seen that the recognition accuracy of the student model is improved when the fixed value of the KD information is maintained rather than the gradual decrease of the KD information during training.

Anomaly detection and attack type classification mechanism using Extra Tree and ANN (Extra Tree와 ANN을 활용한 이상 탐지 및 공격 유형 분류 메커니즘)

  • Kim, Min-Gyu;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.79-85
    • /
    • 2022
  • Anomaly detection is a method to detect and block abnormal data flows in general users' data sets. The previously known method is a method of detecting and defending an attack based on a signature using the signature of an already known attack. This has the advantage of a low false positive rate, but the problem is that it is very vulnerable to a zero-day vulnerability attack or a modified attack. However, in the case of anomaly detection, there is a disadvantage that the false positive rate is high, but it has the advantage of being able to identify, detect, and block zero-day vulnerability attacks or modified attacks, so related studies are being actively conducted. In this study, we want to deal with these anomaly detection mechanisms, and we propose a new mechanism that performs both anomaly detection and classification while supplementing the high false positive rate mentioned above. In this study, the experiment was conducted with five configurations considering the characteristics of various algorithms. As a result, the model showing the best accuracy was proposed as the result of this study. After detecting an attack by applying the Extra Tree and Three-layer ANN at the same time, the attack type is classified using the Extra Tree for the classified attack data. In this study, verification was performed on the NSL-KDD data set, and the accuracy was 99.8%, 99.1%, 98.9%, 98.7%, and 97.9% for Normal, Dos, Probe, U2R, and R2L, respectively. This configuration showed superior performance compared to other models.

A Comparative Study on Deep Learning Topology for Event Extraction from Biomedical Literature (생의학 분야 학술 문헌에서의 이벤트 추출을 위한 심층 학습 모델 구조 비교 분석 연구)

  • Kim, Seon-Wu;Yu, Seok Jong;Lee, Min-Ho;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.51 no.4
    • /
    • pp.77-97
    • /
    • 2017
  • A recent sharp increase of the biomedical literature causes researchers to struggle to grasp the current research trends and conduct creative studies based on the previous results. In order to alleviate their difficulties in keeping up with the latest scholarly trends, numerous attempts have been made to develop specialized analytic services that can provide direct, intuitive and formalized scholarly information by using various text mining technologies such as information extraction and event detection. This paper introduces and evaluates total 8 Convolutional Neural Network (CNN) models for extracting biomedical events from academic abstracts by applying various feature utilization approaches. Also, this paper conducts performance comparison evaluation for the proposed models. As a result of the comparison, we confirmed that the Entity-Type-Fully-Connected model, one of the introduced models in the paper, showed the most promising performance (72.09% in F-score) in the event classification task while it achieved a relatively low but comparable result (21.81%) in the entire event extraction process due to the imbalance problem of the training collections and event identify model's low performance.

Noise-Robust Porcine Respiratory Diseases Classification Using Texture Analysis and CNN (질감 분석과 CNN을 이용한 잡음에 강인한 돼지 호흡기 질병 식별)

  • Choi, Yongju;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.3
    • /
    • pp.91-98
    • /
    • 2018
  • Automatic detection of pig wasting diseases is an important issue in the management of group-housed pigs. In particular, porcine respiratory diseases are one of the main causes of mortality among pigs and loss of productivity in intensive pig farming. In this paper, we propose a noise-robust system for the early detection and recognition of pig wasting diseases using sound data. In this method, first we convert one-dimensional sound signals to two-dimensional gray-level images by normalization, and extract texture images by means of dominant neighborhood structure technique. Lastly, the texture features are then used as inputs of convolutional neural networks as an early anomaly detector and a respiratory disease classifier. Our experimental results show that this new method can be used to detect pig wasting diseases both economically (low-cost sound sensor) and accurately (over 96% accuracy) even under noise-environmental conditions, either as a standalone solution or to complement known methods to obtain a more accurate solution.

Real-time Fault Detection and Classification of Reactive Ion Etching Using Neural Networks (Neural Networks을 이용한 Reactive Ion Etching 공정의 실시간 오류 검출에 관한 연구)

  • Ryu Kyung-Han;Lee Song-Jae;Soh Dea-Wha;Hong Sang-Jeen
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1588-1593
    • /
    • 2005
  • In coagulant control of water treatment plants, rule extraction, one of datamining categories, was performed for coagulant control of a water treatment plant. Clustering methods were applied to extract control rules from data. These control rules can be used for fully automation of water treatment plants instead of operator's knowledge for plant control. To perform fuzzy clustering, there are some coefficients to be determined and these kinds of studies have been performed over decades such as clustering indices. In this study, statistical indices were taken to calculate the number of clusters. Simultaneously, seed points were found out based on hierarchical clustering. These statistical approaches give information about features of clusters, so it can reduce computing cost and increase accuracy of clustering. The proposed algorithm can play an important role in datamining and knowledge discovery.

GAM: A Criticality Prediction Model for Large Telecommunication Systems (GAM: 대형 통신 시스템을 위한 위험도 예측 모델)

  • Hong, Euy-Seok
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.2
    • /
    • pp.33-40
    • /
    • 2003
  • Criticality prediction models that determine whether a design entity is fault-prone or non fault-prone play an important role in reducing system development costs because the problems in early phases largely affect the quality of the late products. Real-time systems such as telecommunication systems are so large that criticality prediction is mere important in real-time system design. The current models are based on the technique such as discriminant analysis, neural net and classification trees. These models have some problems with analyzing causes of the prediction results and low extendability. This paper builds a new prediction model, GAM, based on Genetic Algorithm. GAM is different from other models because it produces a criticality function. So GAM can be used for comparison between entities by criticality. GAM is implemented and compared with a well-known prediction model, BackPropagation neural network Model(BPM), considering Internal characteristics and accuracy of prediction.

  • PDF

A study on the comparison of descriptive variables reduction methods in decision tree induction: A case of prediction models of pension insurance in life insurance company (생명보험사의 개인연금 보험예측 사례를 통해서 본 의사결정나무 분석의 설명변수 축소에 관한 비교 연구)

  • Lee, Yong-Goo;Hur, Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.179-190
    • /
    • 2009
  • In the financial industry, the decision tree algorithm has been widely used for classification analysis. In this case one of the major difficulties is that there are so many explanatory variables to be considered for modeling. So we do need to find effective method for reducing the number of explanatory variables under condition that the modeling results are not affected seriously. In this research, we try to compare the various variable reducing methods and to find the best method based on the modeling accuracy for the tree algorithm. We applied the methods on the pension insurance of a insurance company for getting empirical results. As a result, we found that selecting variables by using the sensitivity analysis of neural network method is the most effective method for reducing the number of variables while keeping the accuracy.

  • PDF

An Efficient Traning of Multilayer Neural Newtorks Using Stochastic Approximation and Conjugate Gradient Method (확률적 근사법과 공액기울기법을 이용한 다층신경망의 효율적인 학습)

  • 조용현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.98-106
    • /
    • 1998
  • This paper proposes an efficient learning algorithm for improving the training performance of the neural network. The proposed method improves the training performance by applying the backpropagation algorithm of a global optimization method which is a hybrid of a stochastic approximation and a conjugate gradient method. The approximate initial point for f a ~gtl obal optimization is estimated first by applying the stochastic approximation, and then the conjugate gradient method, which is the fast gradient descent method, is applied for a high speed optimization. The proposed method has been applied to the parity checking and the pattern classification, and the simulation results show that the performance of the proposed method is superior to those of the conventional backpropagation and the backpropagation algorithm which is a hyhrid of the stochastic approximation and steepest descent method.

  • PDF