• 제목/요약/키워드: neural network classification

검색결과 1,724건 처리시간 0.034초

OptiNeural System for Optical Pattern Classification

  • Kim, Myung-Soo
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권3호
    • /
    • pp.342-347
    • /
    • 1998
  • An OptiNeural system is developed for optical pattern classification. It is a novel hybrid system which consists of an optical processor and a multilayer neural network. It takes advantages of two dimensional processing capability of an optical processor and nonlinear mapping capability of a neural network. The optical processor with a binary phase only filter is used as a preprocessor for feature extraction and the neural network is used as a decision system through mapping. OptiNeural system is trained for optical pattern classification by use of a simulated annealing algorithm. Its classification performance for grey tone texture patterns is excellent, while a conventional optical system shows poor classification performance.

  • PDF

인공신경망 기반의 기타 코드 분류 시스템 성능 비교 (Performance Comparison of Guitar Chords Classification Systems Based on Artificial Neural Network)

  • 박선배;유도식
    • 한국멀티미디어학회논문지
    • /
    • 제21권3호
    • /
    • pp.391-399
    • /
    • 2018
  • In this paper, we construct and compare various guitar chord classification systems using perceptron neural network and convolutional neural network without pre-processing other than Fourier transform to identify the optimal chord classification system. Conventional guitar chord classification schemes use, for better feature extraction, computationally demanding pre-processing techniques such as stochastic analysis employing a hidden markov model or an acoustic data filtering and hence are burdensome for real-time chord classifications. For this reason, we construct various perceptron neural networks and convolutional neural networks that use only Fourier tranform for data pre-processing and compare them with dataset obtained by playing an electric guitar. According to our comparison, convolutional neural networks provide optimal performance considering both chord classification acurracy and fast processing time. In particular, convolutional neural networks exhibit robust performance even when only small fraction of low frequency components of the data are used.

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.

다집단 분류 인공신경망 모형의 아키텍쳐 튜닝 (Tuning the Architecture of Neural Networks for Multi-Class Classification)

  • 정철우;민재형
    • 한국경영과학회지
    • /
    • 제38권1호
    • /
    • pp.139-152
    • /
    • 2013
  • The purpose of this study is to claim the validity of tuning the architecture of neural network models for multi-class classification. A neural network model for multi-class classification is basically constructed by building a series of neural network models for binary classification. Building a neural network model, we are required to set the values of parameters such as number of hidden nodes and weight decay parameter in advance, which draws special attention as the performance of the model can be quite different by the values of the parameters. For better performance of the model, it is absolutely necessary to have a prior process of tuning the parameters every time the neural network model is built. Nonetheless, previous studies have not mentioned the necessity of the tuning process or proved its validity. In this study, we claim that we should tune the parameters every time we build the neural network model for multi-class classification. Through empirical analysis using wine data, we show that the performance of the model with the tuned parameters is superior to those of untuned models.

CNN을 이용한 음성 데이터 성별 및 연령 분류 기술 연구 (A Study on the Gender and Age Classification of Speech Data Using CNN)

  • 박대서;방준일;김화종;고영준
    • 한국정보기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.11-21
    • /
    • 2018
  • 본 논문에서는 사람을 대신하여 분류, 예측 하는 딥러닝 기술을 활용하여 목소리를 통해 남녀노소를 분류하는 연구를 수행한다. 연구과정은 기존 신경망 기반의 사운드 분류 연구를 살펴보고 목소리 분류를 위한 개선된 신경망을 제안한다. 기존 연구에서는 도시 데이터를 이용해 사운드를 분류하는 연구를 진행하였으나, 얕은 신경망으로 인한 성능 저하가 나타났으며 다른 소리 데이터에 대해서도 좋은 성능을 보이지 못했다. 이에 본 논문에서는 목소리 데이터를 전처리하여 특징값을 추출한 뒤 추출된 특징값을 기존 사운드 분류 신경망과 제안하는 신경망에 입력하여 목소리를 분류하고 두 신경망의 분류 성능을 비교 평가한다. 본 논문의 신경망은 망을 더 깊고 넓게 구성함으로써 보다 개선된 딥러닝 학습이 이루어지도록 하였다. 성능 결과로는 기존 연구와 본 연구의 신경망에서 각각 84.8%, 91.4%로 제안하는 신경망에서 약 6% 더 높은 정확도를 보였다.

Bagging 방법을 이용한 원전SG 세관 결함패턴 분류성능 향상기법 (Classification Performance Improvement of Steam Generator Tube Defects in Nuclear Power Plant Using Bagging Method)

  • 이준표;조남훈
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2532-2537
    • /
    • 2009
  • For defect characterization in steam generator tubes in nuclear power plant, artificial neural network has been extensively used to classify defect types. In this paper, we study the effectiveness of Bagging for improving the performance of neural network for the classification of tube defects. Bagging is a method that combines outputs of many neural networks that were trained separately with different training data set. By varying the number of neurons in the hidden layer, we carry out computer simulations in order to compare the classification performance of bagging neural network and single neural network. From the experiments, we found that the performance of bagging neural network is superior to the average performance of single neural network in most cases.

비선형 패턴 분류를 위한 FPGA를 이용한 신경회로망 시스템 구현 (Implementation of a Feed-Forward Neural Network on an FPGA Chip for Classification of Nonlinear Patterns)

  • 이운규;김정섭;정슬
    • 대한전자공학회논문지SD
    • /
    • 제45권1호
    • /
    • pp.20-27
    • /
    • 2008
  • 본 논문에서는 비선형 패턴 분류를 위해 FPGA 칩에 신경회로망을 구현하였다. 병렬처리 연산을 위해 순방향 신경회로망이 구현 되었다. 신경망의 학습을 off-line으로 한 다음에 가중치 값들을 저장하여 사용한다. 예로서, AND와 XOR 논리의 패턴 구분이 수행된다. 실험결과를 통해 FPGA에 구현된 신경회로망이 잘 작동하는 것을 검증하였다.

신경망과 전이학습 기반 표면 결함 분류에 관한 연구 (A Study on the Classification of Surface Defect Based on Deep Convolution Network and Transfer-learning)

  • 김성주;김경범
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.64-69
    • /
    • 2021
  • In this paper, a method for improving the defect classification performance in low contrast, ununiformity and featureless steel plate surfaces has been studied based on deep convolution neural network and transfer-learning neural network. The steel plate surface images have low contrast, ununiformity, and featureless, so that the contrast between defect and defect-free regions are not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. A classifier based on a deep convolution neural network is constructed to extract features automatically for effective classification of images with these characteristics. As results of the experiment, AlexNet-based transfer-learning classifier showed excellent classification performance of 99.43% with less than 160 seconds of training time. The proposed classification system showed excellent classification performance for low contrast, ununiformity, and featureless surface images.

A Review of Artificial Intelligence Models in Business Classification

  • Han, In-goo;Kwon, Young-sig;Jo, Hong-kyu
    • 지능정보연구
    • /
    • 제1권1호
    • /
    • pp.23-41
    • /
    • 1995
  • Business researchers have traditionally used statistical techniques for classification. In late 1980's, inductive learning started to be used for business classification. Recently, neural network began to be a, pp.ied for business classification. This study reviews the business classification studies, identifies a neural network a, pp.oach as the most powerful classification tool, and discusses the problems and issues in neural network a, pp.ications.

  • PDF

Introduction to convolutional neural network using Keras; an understanding from a statistician

  • Lee, Hagyeong;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • 제26권6호
    • /
    • pp.591-610
    • /
    • 2019
  • Deep Learning is one of the machine learning methods to find features from a huge data using non-linear transformation. It is now commonly used for supervised learning in many fields. In particular, Convolutional Neural Network (CNN) is the best technique for the image classification since 2012. For users who consider deep learning models for real-world applications, Keras is a popular API for neural networks written in Python and also can be used in R. We try examine the parameter estimation procedures of Deep Neural Network and structures of CNN models from basics to advanced techniques. We also try to figure out some crucial steps in CNN that can improve image classification performance in the CIFAR10 dataset using Keras. We found that several stacks of convolutional layers and batch normalization could improve prediction performance. We also compared image classification performances with other machine learning methods, including K-Nearest Neighbors (K-NN), Random Forest, and XGBoost, in both MNIST and CIFAR10 dataset.