농촌 인구의 감소와 고령화가 지속되면서 농업 생상성 향상의 중요성이 높아지고 있는 가운데, 농작물 품질에 대한 조기 예측은 농업 생산성 및 수익성 향상에 중요한 역할을 할 수 있다. 최근 CNN 기반의 딥러닝 기술 및 전이 학습을 활용하여 농작물의 질병을 분류하거나 수확량을 예측하는 연구가 활발하게 진행되고 있지만, 수확 후 농작물의 품질을 식재단계에서 조기에 예측하는 연구는 찾아보기 힘들다. 본 연구에서는 건강 기능성 식품으로 주목받고 있는 새싹삼을 대상으로, 수확 후 새싹삼의 품질을 식재단계에서 조기에 예측하는 모델을 제안한다. 이를 위하여 묘삼의 이미지를 촬영한 후 수경재배를 통해 새싹삼을 재배하였고, 수확 후 새싹삼의 품질을 분류하여 실험 데이터를 수집하였다. 다수의 CNN 기반의 사전 학습된 모델을 활용하여 새싹삼 조기 품질 예측 모델을 구축하고, 수집된 데이터를 이용하여 각 모델의 학습 및 예측 성능을 비교 분석하였다. 분석 결과 모든 예측 모델에서 80% 이상의 예측 정확도를 보였으며, 특히 ResNet152V2 기반의 예측 모델에서 가장 높은 정확도를 보였다. 본 연구를 통해 인력에 의존하던 기존의 묘삼 선별 작업을 자동화하여 새싹삼의 품질을 높이고 생산량을 증대시켜 농가의 수익창출에 기여할 수 있을 것으로 기대된다.
암호화폐 중 대표적인 비트코인은 전 세계적으로 많은 관심을 받고 있으며 비트코인의 가격은 등·하락을 거듭하며 높은 변동성을 보이고 있다. 높은 변동성은 투자자들에게 위험 요인으로 작용하며 무분별한 투자로 인한 사회적 문제를 야기시킨다. 비트코인의 가격은 세계의 환경변화에 영향을 받으며 신속하게 반응하기 때문에 실시간으로 다양한 정보를 제공하는 뉴스 정보는 비트코인 가격의 변동성 예측에 유용한 정보를 제공한다. 즉, 긍정적인 뉴스는 투자심리를 자극할 것이며 반대로 부정적인 뉴스는 투자심리를 위축시킬 것이다. 따라서 본 연구에서는 비트코인의 수익률 변동을 예측하기 위해 뉴스의 감성정보와 딥러닝을 적용하였다. 로짓, 인공신경망, SVM, LSTM을 적용하여 단일 예측모형을 구축하였으며 예측성과를 향상시키기 위한 방법으로 통합모형을 제안하였다. 과거의 가격정보를 기반으로 구축한 예측모형과 뉴스의 감성정보를 반영한 예측모형의 성과를 비교한 결과 뉴스의 감성정보를 반영한 예측모형의 성과가 우수하게 나타났으며 통합모형의 성과가 가장 우수한 것으로 나타났다. 본 연구는 비트코인 수익률 변동에 대한 예측모형을 통해 무분별한 투자를 예방하고 투자자들의 현명한 투자가 이루어질 수 있도록 유용한 정보를 제공할 수 있을 것이다.
Background: We recently showed that gintonin, an active ginseng ingredient, exhibits antibrain neurodegenerative disease effects including multiple target mechanisms such as antioxidative stress and antiinflammation via the lysophosphatidic acid (LPA) receptors. Amyotrophic lateral sclerosis (ALS) is a spinal disease characterized by neurodegenerative changes in motor neurons with subsequent skeletal muscle paralysis and death. However, pathophysiological mechanisms of ALS are still elusive, and therapeutic drugs have not yet been developed. We investigate the putative alleviating effects of gintonin in ALS. Methods: The G93A-SOD1 transgenic mouse ALS model was used. Gintonin (50 or 100 mg/kg/day, p.o.) administration started from week seven. We performed histological analyses, immunoblot assays, and behavioral tests. Results: Gintonin extended mouse survival and relieved motor dysfunctions. Histological analyses of spinal cords revealed that gintonin increased the survival of motor neurons, expression of brain-derived neurotrophic factors, choline acetyltransferase, NeuN, and Nissl bodies compared with the vehicle control. Gintonin attenuated elevated spinal NAD(P) quinone oxidoreductase 1 expression and decreased oxidative stress-related ferritin, ionized calcium-binding adapter molecule 1-immunoreactive microglia, S100β-immunoreactive astrocyte, and Olig2-immunoreactive oligodendrocytes compared with the control vehicle. Interestingly, we found that the spinal LPA1 receptor level was decreased, whereas gintonin treatment restored decreased LPA1 receptor expression levels in the G93A-SOD1 transgenic mouse, thereby attenuating neurological symptoms and histological deficits. Conclusion: Gintonin-mediated symptomatic improvements of ALS might be associated with the attenuations of neuronal loss and oxidative stress via the spinal LPA1 receptor regulations. The present results suggest that the spinal LPA1 receptor is engaged in ALS, and gintonin may be useful for relieving ALS symptoms.
본 논문에서는 확률적 모델예측제어(model predictive control) 기법을 이용하여 예제 동작 데이터가 주어지면 물리 기반 시뮬레이션 환경에서 그 동작을 모방할 수 있는 캐릭터 동작 제어기를 빠르게 학습할 수 있는 간편한 지도 학습(supervised learning) 프레임워크를 제안한다. 제안된 프레임워크는 크게 학습 데이터 생성과 오프라인 학습의 두 컴포넌트로 구성된다. 첫번째 컴포넌트는 예제 동작 데이터가 주어지면 확률적 모델예측제어를 통해 그 동작 데이터를 추적하기 위한 최적 제어기를 캐릭터의 현재 상태로부터 시작하여 가까운 미래 상태까지의 시간 윈도우에 대해 주기적으로 업데이트하면서 그 최적 제어기를 통해 캐릭터의 동작을 확률적으로 제어한다. 이러한 주기적인 최적 제어기의 업데이트와 확률적 제어는 주어진 예제 동작 데이터를 모방하는 동안 캐릭터가 가질 수 있는 다양한 상태들을 효과적으로 탐색하게 하여 지도 학습에 유용한 학습 데이터를 수집할 수 있게 해준다. 이렇게 학습 데이터가 수집되면, 오프라인 학습 컴포넌트에서는 그 수집된 데이터를 정규화 시켜서 데이터에 내제된 크기와 단위의 차이를 조정하고 지도 학습을 통해 제어기를 위한 간단한 구조의 인공 신경망을 학습시킨다. 걷기 동작과 달리기 동작에 대한 실험은 본 논문에서 제안한 학습 프레임워크가 물리 기반 캐릭터 동작 제어기를 빠르고 효과적으로 생성할 수 있음을 보여준다.
흉부 X선 영상의 폐렴을 신속하고 정확하게 진단하기 위하여 동일한 Xception 딥러닝 모델에 배치 사이즈를 4, 8, 16, 32로 다르게 적용하여 각각 3회의 모델링을 실시하였다. 그리고 성능평가 및 metric 평가에 대한 결과값을 3회 평균값으로 산출하여 배치 사이즈별 흉부 X선 영상의 폐렴 특징 추출과 분류의 정확도 및 신속성을 비교 평가하였다. 딥러닝 모델링의 성능평가 결과 배치 사이즈 32를 적용한 모델링의 경우 정확도, 손실함수 값, 평균제곱오차, 1 epoch 당 학습 소요 시간의 결과가 가장 우수한 결과를 나타내었다. 그리고 Test Metric의 정확도 평가는 배치 사이즈 8을 적용한 모델링이 가장 우수한 결과를 나타내었으며, 정밀도 평가는 모든 배치 사이즈에서 우수한 결과를 나타내었다. 재현율 평가는 배치 사이즈 16을 적용한 모델링이 가장 우수한 결과를 나타내었으며, F1-score는 배치 사이즈 16을 적용한 모델링이 가장 우수한 결과를 나타내었다. 그리고 AUC score 평가는 모든 배치 사이즈의 결과가 동일하였다. 이러한 결과를 바탕으로 배치 사이즈 32를 적용한 딥러닝 모델링이 높은 정확도, 안정적인 인공신경망 학습 및 우수한 신속성의 결과를 나타내었다. 향후 딥러닝을 이용한 흉부 X선 영상의 폐렴에 대한 특징 추출 및 분류에 관하여 자동진단 연구 시 배치 사이즈를 32로 적용한다면 정확하면서도 신속한 병변 검출이 가능할 것이라고 사료된다.
인간은 오감 (시각, 청각, 후각, 촉각, 미각) 중 시각 및 청각 정보를 위주로 사용하여 주변 물체를 인식한다. 최신의 객체 인식과 관련한 주요 연구에서는 주로 이미지센서 정보를 이용한 분석에 초점이 맞추어져 있다. 본 논문에서는 다양한 chirp 오디오 신호를 관측공간에 방출하고 2채널 수신센서를 통해 echo를 수집하여 스펙트럼 이미지로 변화시킨 후 딥러닝을 기반으로 이미지 학습 알고리즘을 이용하여 3D 공간상의 객체 인식 실험을 진행하였다. 본 실험은 무향실의 이상적 조건이 아닌 일반적인 실내 환경에서 발생하는 잡음 및 echo가 있는 환경에서 실험을 진행하였고 echo를 통해 객체 인식률을 83% 정확도로 물체의 위치 추정할 수 있었다. 또 한 추론 결과를 관측공간과 3D Sound 공간 신호로 mapping 하여 소리로 출력하여 3D 사운드의 학습을 통해 소리를 통한 시각 정보를 얻을 수 있었다. 이는 객체 인식 연구를 위해서 이미지 정보와 함께 다양한 echo 정보의 활용이 요구된다는 의미이며 이런 기술을 3D 사운드를 통한 증강현실 등에 활용 가능할 것이다.
최근 들어 강화 학습은 심층 신경망 기술과 결합되어 바둑, 체스와 같은 보드 게임, Atari, StartCraft와 같은 컴퓨터 게임, 로봇 물체 조작 작업 등과 같은 다양한 분야에서 매우 놀라운 성공을 거두었다. 하지만 이러한 심층 강화 학습은 행동, 상태, 정책 등을 모두 벡터 형태로 표현한다. 따라서 기존의 심층 강화 학습은 학습된 정책의 해석 가능성과 일반성에 제한이 있고, 도메인 지식을 학습에 효과적으로 활용하기도 어렵다는 한계성이 있다. 이러한 한계점들을 해결하기 위해 제안된 새로운 관계형 강화 학습 프레임워크인 dNL-RRL은 센서 입력 데이터와 행동 실행 제어는 기존의 심층 강화 학습과 마찬가지로 벡터 표현을 이용하지만, 행동, 상태, 그리고 학습된 정책은 모두 논리 서술자와 규칙들로 나타내는 관계형 표현을 이용한다. 본 논문에서는 dNL-RRL 관계형 강화 학습 프레임워크를 이용하여 제조 환경 내에서 운송용 모바일 로봇을 위한 행동 정책 학습을 수행하는 효과적인 방법을 제시한다. 특히 본 연구에서는 관계형 강화 학습의 효율성을 높이기 위해, 인간 전문가의 사전 도메인 지식을 활용하는 방안들을 제안한다. 여러 가지 실험들을 통해, 본 논문에서 제안하는 도메인 지식을 활용한 관계형 강화 학습 프레임워크의 성능 개선 효과를 입증한다.
최근 의류 등의 특정 쇼핑몰의 온라인 시장이 크게 확대되면서, 사용자의 리뷰를 활용하는 것이 주요한 마케팅 방안이 되었다. 이를 이용한 감성분석에 대한 연구들도 많이 진행되고 있다. 감성분석은 사용자의 리뷰를 긍정과 부정 그리고 필요에 따라서 중립으로 분류하는 방법이다. 이 방법은 크게 머신러닝 기반의 감성분석과 사전기반의 감성분석으로 나눌 수 있다. 머신러닝 기반의 감성분석은 사용자의 리뷰 데이터와 그에 대응하는 감성 라벨을 이용해서 분류 모델을 학습하는 방법이다. 감성분석 분야의 연구가 발전하면서 리뷰와 함께 제공되는 이미지나 영상 데이터 등을 함께 고려하여 학습하는 멀티모달 방식의 모델들이 연구되고 있다. 리뷰 데이터에서 제품의 카테고리와 사용자별로 사용되는 단어 등의 특징이 다르다. 따라서 본 논문에서는 리뷰데이터와 제품 정보를 동시에 고려하여 감성분석을 진행한다. 리뷰를 분류하는 모델로는 기본 순환신경망 구조에서 Gate 방식을 도입한 Gated Recurrent Unit(GRU), Long Short-Term Memory(LSTM) 그리고 Self Attention 기반의 Multi-head Attention 모델, Bidirectional Encoder Representation from Transformer(BERT)를 사용해서 각각 성능을 비교하였다. 제품 정보는 모두 동일한 Multi-Layer Perceptron(MLP) 모델을 이용하였다. 본 논문에서는 사용자 리뷰를 활용한 Baseline Classifier의 정보와 제품 정보를 활용한 MLP모델의 결과를 결합하는 방법을 제안하며 실제 데이터를 통해 성능의 우수함을 보인다.
본 연구는 정상 가동 중에도 회전수가 변하는 기기의 이상 및 고장 진단 방안을 다루고 있다. 회전수가 변함에 따라 비정상적 시계열 특성을 내포한 센서 데이터에 기계학습을 적용할 수 있는 절차를 제시하고자 하였다. 기계학습으로는 k-Nearest Neighbor(k-NN), Support Vector Machine(SVM), Random Forest을 사용하여 이상 및 고장 진단을 수행하였다. 또한 진단 정확성을 비교할 목적으로 이상 감지에 오토인코더, 고장진단에는 합성곱 기반의 Conv1D도 추가로 이용하였다. 비정상적 시계열로부터 통계 및 주파수 속성으로 구성된 시계열 특징 벡터를 추출하고, 추출된 특징 벡터에 정규화 및 차원 축소 기법을 적용하였다. 특징 벡터의 선택과 정규화, 차원 축소 여부에 따라 달라지는 기계학습의 진단 정확도를 비교하였다. 또한, 적용된 학습 알고리즘 별로 초매개변수 최적화 과정과 적층 구조를 설명하였다. 최종적으로 기존의 심층학습과 비교하여, 기계학습도 가변 회전기기의 고장을 정확하게 진단할 수 있는 절차를 제시하였다.
최근 로봇이나 설비, 회로 등에 센서 내장이 보편화 되고, 측정된 센서 데이터를 학습하여 기기의 고장을 진단하기 위한 연구가 활발하게 수행되고 있다. 이러한 고장 진단 연구는 고장 상황이나 종류를 예측하기 위한 분류(Classification) 모델 개발과 정량적으로 고장 상황을 예측하기 위한 회귀(Regression) 모델 개발로 구분된다. 분류 모델의 경우, 단순히 고장이나 결함의 유무(Class)를 확인하는 반면, 회귀 모델은 무수히 많은 수치 중에 하나의 값(Value)을 예측해야 하므로 학습 난이도가 더 높다. 즉, 입력과 출력을 대응시켜 고장을 예측을 할 때, 유사한 입력값이 동일한 출력을 낸다고 결정하기 어려운 불규칙한 상황이 다수 존재하기 때문이다. 따라서 본 논문에서는 주기성을 지닌 입출력 데이터에 초점을 맞추어, 입출력 관계를 분석하고, 슬라이딩 윈도우 기반으로 입력 데이터를 패턴화 하여 입출력 데이터 간의 규칙성을 확보하도록 한다. 제안하는 방법을 적용하기 위해, 본 연구에서는 MMC(Modular Multilevel Converter) 회로 시스템으로부터 주기성을 지닌 전류, 온도 데이터를 수집하여 ANN을 이용하여 학습을 진행하였다. 실험 결과, 한 주기의 2% 이상의 윈도우를 적용하였을 때, 적합도 97% 이상의 성능이 확보될 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.