• Title/Summary/Keyword: neural damage

Search Result 406, Processing Time 0.038 seconds

Modal parameters based structural damage detection using artificial neural networks - a review

  • Hakim, S.J.S.;Razak, H. Abdul
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.159-189
    • /
    • 2014
  • One of the most important requirements in the evaluation of existing structural systems and ensuring a safe performance during their service life is damage assessment. Damage can be defined as a weakening of the structure that adversely affects its current or future performance which may cause undesirable displacements, stresses or vibrations to the structure. The mass and stiffness of a structure will change due to the damage, which in turn changes the measured dynamic response of the system. Damage detection can increase safety, reduce maintenance costs and increase serviceability of the structures. Artificial Neural Networks (ANNs) are simplified models of the human brain and evolved as one of the most useful mathematical concepts used in almost all branches of science and engineering. ANNs have been applied increasingly due to its powerful computational and excellent pattern recognition ability for detecting damage in structural engineering. This paper presents and reviews the technical literature for past two decades on structural damage detection using ANNs with modal parameters such as natural frequencies and mode shapes as inputs.

CNN-based damage identification method of tied-arch bridge using spatial-spectral information

  • Duan, Yuanfeng;Chen, Qianyi;Zhang, Hongmei;Yun, Chung Bang;Wu, Sikai;Zhu, Qi
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.507-520
    • /
    • 2019
  • In the structural health monitoring field, damage detection has been commonly carried out based on the structural model and the engineering features related to the model. However, the extracted features are often subjected to various errors, which makes the pattern recognition for damage detection still challenging. In this study, an automated damage identification method is presented for hanger cables in a tied-arch bridge using a convolutional neural network (CNN). Raw measurement data for Fourier amplitude spectra (FAS) of acceleration responses are used without a complex data pre-processing for modal identification. A CNN is a kind of deep neural network that typically consists of convolution, pooling, and fully-connected layers. A numerical simulation study was performed for multiple damage detection in the hangers using ambient wind vibration data on the bridge deck. The results show that the current CNN using FAS data performs better under various damage states than the CNN using time-history data and the traditional neural network using FAS. Robustness of the present CNN has been proven under various observational noise levels and wind speeds.

Damage Detection of Beam by Using the Reduction Ratio of Natural Frequency and the Neural Network (고유진동수의 감소율과 신경망을 이용한 보의 손상평가)

  • Ghoi, Hyuk;Lee, Gyu-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.153-165
    • /
    • 2006
  • A damage in a structure changes its dynamic characteristics such as natural frequencies, damping ratios, and the mode shapes. In this paper the effort has been spent in obtaining the characteristics of the reduction ratio in natural frequencies and the damage detection is performed using the reduction ratios. Most of the emphasis has been on using the artificial neural network to determine the location and the extent of the damage as well as the existence of the damage. The data for learning and verifying neural network were obtained from the analytical analysis. The data have no errors. Considering the real measurements the data including errors which are difference this study between other studies also were used for neural network. The position and extent of the damage can be detected using the neural network trained by reduction ratios of natural frequencies.

Damage Detection in Truss Structures Using Deep Learning Techniques (딥러닝 기술을 이용한 트러스 구조물의 손상 탐지)

  • Lee, Seunghye;Lee, Kihak;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.93-100
    • /
    • 2019
  • There has been considerable recent interest in deep learning techniques for structural analysis and design. However, despite newer algorithms and more precise methods have been developed in the field of computer science, the recent effective deep learning techniques have not been applied to the damage detection topics. In this study, we have explored the structural damage detection method of truss structures using the state-of-the-art deep learning techniques. The deep neural networks are used to train knowledge of the patterns in the response of the undamaged and the damaged structures. A 31-bar planar truss are considered to show the capabilities of the deep learning techniques for identifying the single or multiple-structural damage. The frequency responses and the elasticity moduli of individual elements are used as input and output datasets, respectively. In all considered cases, the neural network can assess damage conditions with very good accuracy.

Structural damage detection of steel bridge girder using artificial neural networks and finite element models

  • Hakim, S.J.S.;Razak, H. Abdul
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.367-377
    • /
    • 2013
  • Damage in structures often leads to failure. Thus it is very important to monitor structures for the occurrence of damage. When damage happens in a structure the consequence is a change in its modal parameters such as natural frequencies and mode shapes. Artificial Neural Networks (ANNs) are inspired by human biological neurons and have been applied for damage identification with varied success. Natural frequencies of a structure have a strong effect on damage and are applied as effective input parameters used to train the ANN in this study. The applicability of ANNs as a powerful tool for predicting the severity of damage in a model steel girder bridge is examined in this study. The data required for the ANNs which are in the form of natural frequencies were obtained from numerical modal analysis. By incorporating the training data, ANNs are capable of producing outputs in terms of damage severity using the first five natural frequencies. It has been demonstrated that an ANN trained only with natural frequency data can determine the severity of damage with a 6.8% error. The results shows that ANNs trained with numerically obtained samples have a strong potential for structural damage identification.

Fatigue Damage Estimation of Wide Band Spectrum Considering Various Artificial Neural Networks (다양한 인공 신경망을 적용한 광대역 스펙트럼의 피로손상 예측)

  • Park, Jun-Bum;Kim, Sung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.341-348
    • /
    • 2016
  • The fatigue damage caused by wide band loadings has generally been predicted using fatigue damage models in the frequency domain rather than a rain-flow counting method in the time domain because of its computation cost. This study showed that these fatigue damage models can be simplified in the form of normalized fatigue damage as a function of the S-N curve slope and bandwidth parameters. Based on numerical simulations of various wide band spectra, it was found that fatigue damage models in the form of normalized fatigue damage with one S-N curve slope and two bandwidth parameters( α1 , α2 ) provided less reasonable fatigue damage. Therefore, an additional bandwidth parameter needs to be considered based on a sensitivity study using various neural networks, which proved that α1-5 would be the dominant factor of a fatigue damage model as an additional bandwidth parameter.

Experimental studies on impact damage location in composite aerospace structures using genetic algorithms and neural networks

  • Mahzan, Shahruddin;Staszewski, Wieslaw J.;Worden, Keith
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.147-165
    • /
    • 2010
  • Impact damage detection in composite structures has gained a considerable interest in many engineering areas. The capability to detect damage at the early stages reduces any risk of catastrophic failure. This paper compares two advanced signal processing methods for impact location in composite aircraft structures. The first method is based on a modified triangulation procedure and Genetic Algorithms whereas the second technique applies Artificial Neural Networks. A series of impacts is performed experimentally on a composite aircraft wing-box structure instrumented with low-profile, bonded piezoceramic sensors. The strain data are used for learning in the Neural Network approach. The triangulation procedure utilises the same data to establish impact velocities for various angles of strain wave propagation. The study demonstrates that both approaches are capable of good impact location estimates in this complex structure.

A novel approach to damage localisation based on bispectral analysis and neural network

  • Civera, M.;Fragonara, L. Zanotti;Surace, C.
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.669-682
    • /
    • 2017
  • The normalised version of bispectrum, the so-called bicoherence, has often proved a reliable method of damage detection on engineering applications. Indeed, higher-order spectral analysis (HOSA) has the advantage of being able to detect non-linearity in the structural dynamic response while being insensitive to ambient vibrations. Skewness in the response may be easily spotted and related to damage conditions, as the majority of common faults and cracks shows bilinear effects. The present study tries to extend the application of HOSA to damage localisation, resorting to a neural network based classification algorithm. In order to validate the approach, a non-linear finite element model of a 4-meters-long cantilever beam has been built. This model could be seen as a first generic concept of more complex structural systems, such as aircraft wings, wind turbine blades, etc. The main aim of the study is to train a Neural Network (NN) able to classify different damage locations, when fed with bispectra. These are computed using the dynamic response of the FE nonlinear model to random noise excitation.

A Study on Fatigue Damage Modeling Using Neural Networks

  • Lee Dong-Woo;Hong Soon-Hyeok;Cho Seok-Swoo;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1393-1404
    • /
    • 2005
  • Fatigue crack growth and life have been estimated based on established empirical equations. In this paper, an alternative method using artificial neural network (ANN) -based model developed to predict fatigue damages simultaneously. To learn and generalize the ANN, fatigue crack growth rate and life data were built up using in-plane bending fatigue test results. Single fracture mechanical parameter or nondestructive parameter can't predict fatigue damage accurately but multiple fracture mechanical parameters or nondestructive parameters can. Existing fatigue damage modeling used this merit but limited real-time damage monitoring. Therefore, this study shows fatigue damage model using backpropagation neural networks on the basis of X -ray half breadth ratio B / $B_o$, fractal dimension $D_f$ and fracture mechanical parameters can estimate fatigue crack growth rate da/ dN and cycle ratio N / $N_f$ at the same time within engineering limit error ($5\%$).

A Study of Fatigue Damage Model using Neural Networks in 2024-T3 Aluminium Alloy (신경회로망을 이용한 Al 2024-T3 합금의 피로손상모델에 관한 연구)

  • 홍순혁;조석수;주원식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2001
  • To estimate crack growth rate and cycle ratio uniquely, many investigators have developed various kinds of mechanical parameters and theories. But, thes have produced local solution space through single parameter. Neural Networks can perform patten classification using several input and output parameters. Fatigue damage model by neural networks was used to recognize the relation between da/dN/N/N(sub)f, and half-value breadth ratio B/Bo, fractal dimension D(sub)f, and fracture mechanical parameters in 2024-T3 aluminium alloy. Learned neural networks has ability to predict both crack growth rate da/dN and cycly ratio /N/N(sub)f within engineering estimated mean error(5%).

  • PDF