• Title/Summary/Keyword: neural controller

Search Result 1,264, Processing Time 0.026 seconds

A study on the Adaptive Controller with Chaotic Dynamic Neural Networks

  • Kim, Sang-Hee;Ahn, Hee-Wook;Wang, Hua O.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2007
  • This paper presents an adaptive controller using chaotic dynamic neural networks(CDNN) for nonlinear dynamic system. A new dynamic backpropagation learning method of the proposed chaotic dynamic neural networks is developed for efficient learning, and this learning method includes the convergence for improving the stability of chaotic neural networks. The proposed CDNN is applied to the system identification of chaotic system and the adaptive controller. The simulation results show good performances in the identification of Lorenz equation and the adaptive control of nonlinear system, since the CDNN has the fast learning characteristics and the robust adaptability to nonlinear dynamic system.

Closed Loop System Identification of Steam Generator Using Neural Networks (신경 회로망을 이용한 증기 발생기의 폐 루프 시스템 규명)

  • Park, Jong-Ho;Han, Hoo-Seuk;Chong, Kil-To
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.78-86
    • /
    • 1999
  • The improvement of the water level control is important since it will prevent the steam generator trip so that improve the reliability and credibility of operation system. In this paper, the closed loop system identification is performed which can be used for the system monitoring and prediction of the system response. The model also can be used for the prediction control. Irving model is used as a steam generator model. The plant is an open loop unstable and non-minimum phase system. Fuzzy controller stabilize the system and the stable controller stabilize the system and the stable closed loop system is identified using neural networks. The obtained neural network model is validated using the untrained input and output. The results of computer simulation show the obtained Neural Network model represents the closed loop system well.

  • PDF

A Design of Model-Based Leaming Controller using Artificial Neural Networks (신경회로망을 이용할 모델 기반 학습 제어기의 설계)

  • Roh, C.L.;Kim, Seung-Do;Chung, M.J.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.401-403
    • /
    • 1992
  • For the control of robotic manipulators with unknown or uncertain dynamics, leaming control schemes are very effective control schemes for repeated trajectory following tasks. In this class of controllers, control techniques using neural networks have been gaining much attention in recent years.. In this note, we discuss the leaming control techniques using neural networks and propose a new model-based control scheme using multilayered neural networks. Three-layerd neural network is used as a feedback controller to compensate the mismatched terms between model plant and real plant. Computer simulations are performed to show the applicability and the limitation of the proposed controller.

  • PDF

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법에 의한 이동 로봇의 자율주행 제어시스템 개발)

  • 김종수;한덕기;김영규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.250-254
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

A neuro-fuzzy adaptive controller

  • Chung, Hee-Tae;Lee, Hyun-Cheol;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.261-264
    • /
    • 1992
  • This paper proposes a neuro-fuzzy adaptive controller which includes the procedure of initializing the identification neural network(INN) and that of learning the control neural network(CNN). The identification neural network is initialized with the informations of the plant which are obtained by a fuzzy controller and the control neural network is trained by the weight informations of the identification neural network during on-line operation.

  • PDF

A Study on the Design of Optimal Variable Structure Controller using Multilayer Neural Inverse Identifier (신경 회로망을 이용한 최적 가변구조 제어기의 설계에 관한 연구)

  • 이민호;최병재;이수영;박철훈;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1670-1679
    • /
    • 1995
  • In this paper, an optimal variable structure controller with a multilayer neural inverse identifier is proposed. A multilayer neural network with error back propagation learning algorithm is used for construction the neural inverse identifier which is an observer of the external disturbances and the parameter variations of the system. The variable structure controller with the multilayer neural inverse identifier not only needs a small part of a priori knowledge of the bounds of external disturbances and parameter variations but also alleviates the chattering magnitude of the control input. Also, an optimal sliding line is designed by the optimal linear regulator technique and an integrator is introduced for solving the reaching phase problem. Computer simulation results show that the proposed approach gives the effective control results by reducing the chattering magnitude of control input.

  • PDF

The Azimuth and Velocity Control of a Movile Robot with Two Drive Wheel by Neutral-Fuzzy Control Method (뉴럴-퍼지제어기법에 의한 두 구동휠을 갖는 이동 로봇의 자세 및 속도 제어)

  • 한성현
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.84-95
    • /
    • 1997
  • This paper presents a new approach to the design speed and azimuth control of a mobile robot with drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frmework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simple the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Design of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Technique (퍼자-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계)

  • 김휘동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.199-203
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Adaptive High-Order Neural Network Control of Induction Servomotor System (유도기 서보모터 시스템의 적응 고차 신경망 제어)

  • Kim, Do-Woo;Chung, Ki-Chull;Lee, Seng-Hak
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.650-653
    • /
    • 2005
  • In this paper, adaptive high-order neural network controller(AHONNC) is adopted to control an induction servomotor. A algorithm is developed by combining compensation control and high-order neural networks. Moreover, an adaptive bound estimation algorithm was proposed to estimate the bound of approximation error. The weight of the high-order neural network can be online tuned in the sense of the Lyapunov stability theorem; thus, the stability of the closed-loop system can be guaranteed. Simulation results for induction servomotor drive system are shown to confirm the validity of the proposed controller.

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법을 이용한 이동형 로봇의 자율주행 제어시스템 개발)

  • 김휘동;양승윤;전완수;안병국;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.130-134
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF