• Title/Summary/Keyword: neural controller

Search Result 1,264, Processing Time 0.027 seconds

Tracking Performance Improvement of Discrete Signal using Neural Networks and Self Tuning Controller (신경망모델과 자기 동조 제어기를 이용한 이산신호의 추적 성능 개선)

  • 최수열;정연만;최부귀
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-26
    • /
    • 1998
  • In this paper, Simulation result was studied by PID controller in series to the estblised neural networks controller. Neural network model is composed of two layers to evaluate tracking performance improvement. The regular dynamics was also studied for the expected error to be minimized by using Widrow-Hoff delta rule. As a result of the study, We identified that tracking performance improvement was developed more in case of connecting PID than conventional neural network controller and that tracking plant parameter in 251 sample was approached rapidly in case of time varying.

  • PDF

Neural network PI parameter Self-tuning Simulator for Permanent Magnet Synchronous Motor operation (영구자석 동기전동기 구동을 위한 신경회로망 PI 파라미터 자기 동조 시뮬레이터)

  • Bae, Eun-Kyeong;Kwon, Jung-Dong;Jeon, Kee-Young;Park, Choon-Woo;Oh, Bong-Hwan;Jeong, Choon-Byeong;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.394-396
    • /
    • 2007
  • In this paper proposed to neural network PI self-tuning direct controller using Error back propagation algorithm. Proposed controller applies to speed controller and current controller. Also, this built up the interface environment to drive it simply and exactly in any kind of reference, environment fluent and parameter transaction of PMSM. Neural network PI self-tuning simulator using Visual C++ and Matlab Simulation is organized to construct this environment, Built up interface has it's own purpose that even the user who don't have the accurate knowledge of Neural network can embody operation characteristic rapidly and easily.

  • PDF

Design of an Adaptive Control System using Neural Network (신경 회로망을 이용한 적응 제어 시스템의 설계)

  • Jang, Tae-In;Rhee, Hyung-Chan;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.231-234
    • /
    • 1993
  • This paper deals with the design of an adaptive controller using neural network. We present RBFMLP Neural Network which consists of serial-connected two networks - Radial Basis Function Network and Multi Layer Perceptron, and then design a controller based on proposed networks with the adaptive control system structure, The plant and parameters of the controller are identified by the neural networks. We use the dynamic backpropagation algorithm for the learning of networks. Simulations represent the superiorities of the proposed network and the controller.

  • PDF

NEURAL NETWORK CONTROLLER FOR A PERMANENT MAGNET GENERATOR APPLIED IN WIND ENERGY CONVERSION SYSTEM

  • Eskander Mona N.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.656-659
    • /
    • 2001
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system(WECS) employing a permanent magnet synchronous generator, is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-times of the switching devices of the two converters are supplied by the developed neural network(NN). The effect of sudden changes in wind speed ,and/or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simultaneously with the developed neural network controller. The results proved also the fast response and robustness of the proposed control system.

  • PDF

Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks (신경회로망을 이용한 이산 비선형 재형상 비행제어시스템)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

Reconfigurable Flight Control Law Using Adaptive Neural Networks and Backstepping Technique (백스테핑기법과 신경회로망을 이용한 적응 재형상 비행제어법칙)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • A neural network based adaptive controller design method is proposed for reconfigurable flight control systems in the presence of variations in aerodynamic coefficients or control effectiveness decrease caused by control surface damage. The neural network based adaptive nonlinear controller is developed by making use of the backstepping technique for command following of the angle of attack, sideslip angle, and bank angle. On-line teaming neural networks are implemented to guarantee reconfigurability and robustness to the uncertainties caused by aerodynamic coefficients variations. The main feature of the proposed controller is that the adaptive controller is designed with assumption that not any of the nonlinear functions of the system is known accurately, whereas most of the previous works assume that only some of the nonlinear functions are unknown. Neural networks loam through the weight update rules that are derived from the Lyapunov control theory. The closed-loop stability of the error states is also investigated according to the Lyapunov theory. A nonlinear dynamic model of an F-16 aircraft is used to demonstrate the effectiveness of the proposed control law.

Neural Network Based Guidance Control of a Mobile Robot

  • Jang, Pyoung-Soo;Jang, Eun-Soo;Jeon, Sang-Woon;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1099-1104
    • /
    • 2003
  • In this paper, the position control of a car-like mobile robot using neural network is proposed. The positional information of the mobile robot is given by a laser range finder located remotely through wireless communication. The heading angle is measured by a gyro sensor. Considering these two sensor information as references, the robot posture by localization is corrected by a cascaded controller. In order to improve the tracking performance, a neural network with a cascaded controller is used to compensate for any uncertainty in the robot. The remotely located neural network filter modifies the reference trajectories to minimize the positional errors by wireless communication. A car-like mobile robot is built as a test-bed and experimental studies of proposed several control algorithms are performed. It turns out that the best position control can be achieved by a cascaded controller with neural network.

  • PDF

Nonlinear Adaptive Control of Unmanned Helicopter Using Neural Networks Compensator (신경회로망 보상기를 이용한 무인헬리콥터의 비선형적응제어)

  • Park, Bum-Jin;Hong, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • To improve the performance of inner loop based on PD controller for a unmanned helicopter, neural networks are applied. The performance of PD controller designed on the response characteristics of error dynamics decreases because of uncertain nonlinearities of the system. The nonlinearities are decoupled to modified dynamic inversion model(MDIM) and are compensated by the neural networks. For the training of the neural networks, online weight adaptation laws which are derived from Lyapunov's direct method are used to guarantee the stability of the controller. The results of the improved performance of PD controller by neural networks are illustrated in the simulation of unmanned helicopter with nonlinearities,

Stable Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2254-2259
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network(WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges advantages of neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of mobile robot using the gradient descent(GD) method. In addition, an approach that uses adaptive learning rates for the training of WFNN controller is driven via a Lyapunov stability analysis to guarantee the fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control performance of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

  • PDF

Trajectoroy control for a Robot Manipulator by Using Multilayer Neural Network (다층 신경회로망을 사용한 로봇 매니퓰레이터의 궤적제어)

  • 안덕환;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1186-1193
    • /
    • 1991
  • This paper proposed a trajectory controlmethod for a robot manipulator by using neural networks. The total torque for a manipulator is a sum of the linear feedback controller torque and the neural network feedfoward controller torque. The proposed neural network is a multilayer neural network with time delay elements, and learns the inverse dynamics of manipulator by means of PD(propotional denvative)controller error torque. The error backpropagation (BP) learning neural network controller does not directly require manipulator dynamics information. Instead, it learns the information by training and stores the information and connection weights. The control effects of the proposed system are verified by computer simulation.

  • PDF