• 제목/요약/키워드: neural control

검색결과 3,128건 처리시간 0.036초

신경망을 이용한 PID 제어기의 최적 이득값 추정 (Optimal Gain Estimation of PID Controller Using Neural Networks)

  • 박성욱;손준혁;서보혁
    • 전기학회논문지P
    • /
    • 제53권3호
    • /
    • pp.134-141
    • /
    • 2004
  • Recently, neural network techniques are widely used in adaptive and learning control schemes for production systems. However, in general it takes up a lot of time to learn in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult for the PID gains suitably, lots of researches have been reported with respect of turning schemes of PID gains. A neural network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed neural network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accidents.

신경망을 이용한 PID 제어기의 제어 사양 최적의 이득값 추정 (Optimal Condition Gain Estimation of PID Controller using Neural Networks)

  • 손준혁;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.717-719
    • /
    • 2003
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult to the PID gains suitably lots of researches have been reported with respect to turning schemes of PID gains. A Neural Network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident.

  • PDF

고급 분산 제어시스템을 위한 신경 회로망 제어 알고리즘의 개발 (Development of neural network algorithm for an advanced distributed control system)

  • 이승준;박세화;박동조;김병국;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.953-958
    • /
    • 1993
  • We develop a neural network control algorithm for the ACS (Advanced Control System). The ACS is an extended version of the DCS (Distributed Control System) to which functions of fault detection and diagnosis and advanced control algorithms are added such as neural networks, fuzzy logics, and so on. In spite of its usefulness proven by computer simulations, the neural network control algorithm, as far as we know, has no tool which makes it applicable to process control. It is necessary that the neural network controller should be turned into the function code for its application to the ACS. So we develop a general method to implement the neural network control systems for the ACS. By simulations using the simulator for the boiler of 'Seoul fire power plant unit 4', the methodology proposed in this paper is validated to have the applicability to process control.

  • PDF

TMS320C3x 칩을 이용한 로보트 매뉴퓰레이터의 실시간 신경 제어기 실현 (Implementation of a real-time neural controller for robotic manipulator using TMS 320C3x chip)

  • 김용태;한성현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.65-68
    • /
    • 1996
  • Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. The TMS32OC31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the, network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time, control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

신경망을 이용한 엔진/브레이크 통합 VDC 시스템에 관한 연구 (A Study on the Engine/Brake integrated VDC System using Neural Network)

  • 지강훈;정광영;김성관
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.414-421
    • /
    • 2007
  • This paper presents a engine/brake integrated VDC(Vehicle Dynamic Control) system using neural network algorithm methods for wheel slip and yaw rate control. For stable performance of vehicle, not only is the lateral motion control(wheel slip control) important but the yaw motion control of the vehicle is crucial. The proposed NNPI(Neural Network Proportional-Integral) controller operates at throttle angle to improve the performance of wheel slip. Also, the suggested NNPID controller performs at brake system to improve steering performance. The proposed controller consists of multi-hidden layer neural network structure and PID control strategy for self-learning of gain scheduling. Computer Simulation have been performed to verify the proposed neural network based control scheme of 17 dof vehicle dynamic model which is implemented in MATLAB Simulink.

The Speed Control and Estimation of IPMSM using Adaptive FNN and ANN

  • Lee, Hong-Gyun;Lee, Jung-Chul;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1478-1481
    • /
    • 2005
  • As the model of most practical system cannot be obtained, the practice of typical control method is limited. Accordingly, numerous artificial intelligence control methods have been used widely. Fuzzy control and neural network control have been an important point in the developing process of the field. This paper is proposed adaptive fuzzy-neural network based on the vector controlled interior permanent magnet synchronous motor drive system. The fuzzy-neural network is first utilized for the speed control. A model reference adaptive scheme is then proposed in which the adaptation mechanism is executed using fuzzy-neural network. Also, this paper is proposed estimation of speed of interior permanent magnet synchronous motor using artificial neural network controller. The back-propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back-propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

Electrical Engineering Design Method Based on Neural Network and Application of Automatic Control System

  • Zhe, Zhang;Yongchang, Zhang
    • Journal of Information Processing Systems
    • /
    • 제18권6호
    • /
    • pp.755-762
    • /
    • 2022
  • The existing electrical engineering design method and the dynamic objective function in the application process of automatic control system fail to meet the unbounded condition, which affects the control tracking accuracy. In order to improve the tracking control accuracy, this paper studies the electrical engineering design method based on neural network and the application of automatic control system. This paper analyzes the structure and working mechanism of electrical engineering automation control system by an automation control model with main control objectives. Following the analysis, an optimal solution of controllability design and fault-tolerant control is figured out. The automatic control power coefficient is distributed based on an ideal control effect of system. According to the distribution results, an automatic control algorithm is based on neural network for accurate control. The experimental results show that the electrical automation control method based on neural network can significantly reduce the control following error to 3.62%, improve the accuracy of the electrical automation tracking control, thus meeting the actual production needs of electrical engineering automation control system.

신경회로망 제어기을 이용한 볼-빔 시스템의 안정화 위치제어 (Stabilization Position Control of a Ball-Beam System Using Neural Networks Controller)

  • 탁한호;추연규
    • 한국항해학회지
    • /
    • 제23권3호
    • /
    • pp.35-44
    • /
    • 1999
  • This research aims to seek active control of ball-beam position stability by resorting to neural networks whose layers are given bias weights. The controller consists of an LQR (linear quadratic regulator) controller and a neural networks controller in parallel. The latter is used to improve the responses of the established LQR control system, especially when controlling the system with nonlinear factors or modelling errors. For the learning of this control system, the feedback-error learning algorithm is utilized here. While the neural networks controller learns repetitive trajectories on line, feedback errors are back-propagated through neural networks. Convergence is made when the neural networks controller reversely learns and controls the plant. The goals of teaming are to expand the working range of the adaptive control system and to bridge errors owing to nonlinearity by adjusting parameters against the external disturbances and change of the nonlinear plant. The motion equation of the ball-beam system is derived from Newton's law. As the system is strongly nonlinear, lots of researchers have depended on classical systems to control it. Its applications of position control are seen in planes, ships, automobiles and so on. However, the research based on artificial control is quite recent. The current paper compares and analyzes simulation results by way of the LQR controller and the neural network controller in order to prove the efficiency of the neural networks control algorithm against any nonlinear system.

  • PDF

MTPA Control of Induction Motor Drive using Fuzzy-Neural Networks Controller

  • Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1474-1477
    • /
    • 2005
  • This paper is proposed maximum torque per ampere of induction motor using fuzzy-neural networks controller. Operation of maximum torque per ampere is achieved when, at a given torque and speed, the slip frequency is adjusted to that so that the stator current amplitude is minimized. This paper introduces a induction motor drive system with fuzzy-neural networks controller. A neural network-based architecture is described for fuzzy logic control. The characteristic rule and their membership function of fuzzy system are represented as the processing nodes in the neural network structure. This paper is proposed the analysis as well as the simulation results to verify the effectiveness of the new method.

  • PDF

비선형 화학공정의 신경망 모델예측제어 (Neural model predictive control for nonlinear chemical processes)

  • 송정준;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.490-495
    • /
    • 1992
  • A neural model predictive control strategy combining a neural network for plant identification and a nonlinear programming algorithm for solving nonlinear control problems is proposed. A constrained nonlinear optimization approach using successive quadratic programming cooperates with neural identification network is used to generate the optimum control law for the complicate continuous/batch chemical reactor systems that have inherent nonlinear dynamics. Based on our approach, we developed a neural model predictive controller(NMPC) which shows excellent performances on nonlinear, model-plant mismatch cases of chemical reactor systems.

  • PDF