• Title/Summary/Keyword: neural amplifier

Search Result 23, Processing Time 0.022 seconds

Pattern recognition using AC treatment for semiconductor gas sensor array

  • Nguyen, Viet-Dung;Joo, Byung-Su;Huh, Jeung-Su;Lee, Duk-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1549-1552
    • /
    • 2003
  • Semiconductor gas sensor using tin oxide as sensing material has been used to detect gases based on the fact that impedance of the sensing material varies when the gas sensor is exposed to the gases. This variation comprises of two parts. The first one is variation in resistance of the sensing material and the other is expressed in terms of the sensor capacitance variation. Normally, only variation of the sensor resistance is considered. In this paper, using AC measurement with a capacitor-coupled inverting amplifier circuit, both changes in the sensor resistance and variations in the sensor capacitance were investigated. These characteristics were represented as magnitude gain and phase shift of AC signal at a specific frequency after passing it through the sensor and the designed circuit. A two-stage artificial neural network, which utilized the information above, was employed to identify and quantify three combustible gases: methane, propane and butane. The network outputs were approximately proportional to concentrations of test gases with reasonable level of error.

  • PDF

A Study on the Control System Implementation of Human Body Nerves Signal (인체 신경신호 제어시스템 구현에 관한 연구)

  • Ko, Duck-Young;Kim, Sung-Gon;Choi, Jong-Ho
    • 전자공학회논문지 IE
    • /
    • v.43 no.1
    • /
    • pp.16-24
    • /
    • 2006
  • This paper is aimed to develope of an integrated BCI(Brain Computer Interface System) that make possible for simultaneous multichannel data process and used extra cellular neural activity from the vestibular system instead of electroencephalogram signals for more precision control. The electrical properties pre-amplifier are 47.6 dB of gain, 0.005 % of distortion at 100 Hz, 12M$\Omega$ of input impedance. Window discriminator used two CPU with difference role to increase processing speed so that sampling frequency was 87 kHz. The designed window discriminator has more not only two times in signal resolution power but also ten times in error discrimination power than commericially available discriminator. The proposed method decreases 100 times in amount of integrated data then BCI system during 100 ms.

Computer Aided Diagnosis System for Evaluation of Mechanical Artificial Valve (기계식 인공판막 상태 평가를 위한 컴퓨터 보조진단 시스템)

  • 이혁수
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.421-430
    • /
    • 2004
  • Clinically, it is almost impossible for a physician to distinguish subtle changes of frequency spectrum by using a stethoscope alone especially in the early stage of thrombus formation. Considering that reliability of mechanical valve is paramount because the failure might end up with patient death, early detection of valve thrombus using noninvasive technique is important. Thus the study was designed to provide a tool for early noninvasive detection of valve thrombus by observing shift of frequency spectrum of acoustic signals with computer aid diagnosis system. A thrombus model was constructed on commercialized mechanical valves using polyurethane or silicon. Polyurethane coating was made on the valve surface, and silicon coating on the sewing ring of the valve. To simulate pannus formation, which is fibrous tissue overgrowth obstructing the valve orifice, the degree of silicone coating on the sewing ring varied from 20%, 40%, 60% of orifice obstruction. In experiment system, acoustic signals from the valve were measured using microphone and amplifier. The microphone was attached to a coupler to remove environmental noise. Acoustic signals were sampled by an AID converter, frequency spectrum was obtained by the algorithm of spectral analysis. To quantitatively distinguish the frequency peak of the normal valve from that of the thrombosed valves, analysis using a neural network was employed. A return map was applied to evaluate continuous monitoring of valve motion cycle. The in-vivo data also obtained from animals with mechanical valves in circulatory devices as well as patients with mechanical valve replacement for 1 year or longer before. Each spectrum wave showed a primary and secondary peak. The secondary peak showed changes according to the thrombus model. In the mock as well as the animal study, both spectral analysis and 3-layer neural network could differentiate the normal valves from thrombosed valves. In the human study, one of 10 patients showed shift of frequency spectrum, however the presence of valve thrombus was yet to be determined. Conclusively, acoustic signal measurement can be of suggestive as a noninvasive diagnostic tool in early detection of mechanical valve thrombosis.